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Exercise 1
You are observing starfish that made their way to a previously uninhabited tide-pool. You’d like to predict
the year-on-year population of these starfish. You start with a simple assumption

#new children per year ∼ size of current population

1.1 Come up with a mathematical model for the number of star fish in a given year. Your model should
• Define any notation (variables and parameters) you use

• Include at least one formula/equation

• Explain how your formula/equation relates to the starting assumption
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Exercise 2
Let

(Birth Rate) 𝐾 = 1.1 children per starfish per year
(Initial Pop.) 𝑃0 = 10 star fish

and define the model 𝐌1 to be the model for starfish population with these parameters.

2.1 Simulate the total number of starfish per year using Excel.
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Exercise 3
Recall the model 𝐌1 (from the previous question).

Define the model 𝐌∗
1 to be

𝑃(𝑡) = 𝑃0𝑒0.742𝑡

3.1 Are 𝐌1 and 𝐌∗
1 different models or the same?

3.2 Which of 𝐌1 or 𝐌∗
1 is better?

3.3 List an advantage and a disadvantage for each of 𝐌1 and 𝐌∗
1.
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Exercise 4
In the model 𝐌1, we assumed the starfish had 𝐾 children at one point during the year.
4.1 Create a model 𝐌𝑛 where the starfish are assumed to have 𝐾/𝑛 children 𝑛 times per year (at regular

intervals).

4.2 Simulate the models 𝐌1, 𝐌2, 𝐌3 in Excel. Which grows fastest?

4.3 What happens to 𝐌𝑛 as 𝑛 → ∞?
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Exercise 5
Exploring 𝐌𝑛
We can rewrite the assumptions of 𝐌𝑛 as follows:

• At time 𝑡 there are 𝑃𝑛(𝑡) starfish.

• 𝑃𝑛(0) = 10
• During the time interval (𝑡, 𝑡 + 1

𝑛) there will be (on average) 𝐾
𝑛  new children per starfish.

5.1 Write an expression for 𝑃𝑛(𝑡 + 1
𝑛) in terms of 𝑃𝑛(𝑡).

5.2 Write an expression for Δ𝑃𝑛, the change in population from time 𝑡 to 𝑡 + Δ𝑡.
5.3 Write an expression for Δ𝑃𝑛

Δ𝑡 .

5.4 Write down a differential equation relating 𝑃 ′(𝑡) to 𝑃(𝑡) where 𝑃(𝑡) = lim
𝑛→∞

𝑃𝑛(𝑡).
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Exercise 6
Recall the model 𝐌1 defined by:

• 𝑃1(0) = 10
• 𝑃1(𝑡 + 1) = 𝐾𝑃(𝑡) for 𝑡 ≥ 0 years and 𝐾 = 1.1.

Define the model 𝐌∞ by:
• 𝑃(0) = 10
• 𝑃 ′(𝑡) = 𝑘𝑃(𝑡).

6.1 If 𝑘 = 𝐾 = 1.1, does the model 𝐌∞ produce the same population estimates as 𝐌1?
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Exercise 7
Suppose that the estimates produced by 𝐌1 agree with the actual (measured) population of starfish.

Fill out the table indicating which models have which properties.

Model Accuracy Explanatory (your favourite property)

𝐌1

𝐌∗
1

𝐌∞
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Exercise 8
Recall the model 𝐌1 defined by:

• 𝑃1(0) = 10
• 𝑃1(𝑡 + 1) = 𝐾𝑃(𝑡) for 𝑡 ≥ 0 years and 𝐾 = 1.1.

Define the model 𝐌∞ by:
• 𝑃(0) = 10
• 𝑃 ′(𝑡) = 𝑘𝑃(𝑡).

8.1 Suppose that 𝐌1 accurately predicts the population. Can you find a value of 𝑘 so that 𝐌∞ accurately
predicts the population?
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Exercise 9
After more observations, scientists notice a seasonal
effect on starfish. They propose a new model called
𝐒:

• 𝑃(0) = 10
• 𝑃 ′(𝑡) = 𝑘 ⋅ 𝑃 (𝑡) ⋅ | sin(2𝜋𝑡)|

9.1 What can you tell about the population (with-
out trying to compute it)?

9.2 Assuming 𝑘 = 1.1, estimate the population af-
ter 10 years.

9.3 Assuming 𝑘 = 1.1, estimate the population af-
ter 10.3 years.
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Exercise 10
Consider the following argument for the popula-
tion model 𝐒 where 𝑃 ′(𝑡) = 𝑃(𝑡) ⋅ |sin(2𝜋𝑡)| with
𝑃(0) = 10:

At 𝑡 = 0, the change in population ≈ 𝑃 ′(0) =
0, so

𝑃(1) ≈ 𝑃(0) + 𝑃 ′(0) ⋅ 1 = 𝑃(0) = 10.

At 𝑡 = 1, the change in population ≈ 𝑃 ′(1) =
0, so

𝑃(2) ≈ 𝑃(1) + 𝑃 ′(1) ⋅ 1 = 𝑃(0) = 10.

And so on.

So, the population of starfish remains con-
stant.

10.1 Do you believe this argument? Can it be im-
proved?

10.2 Simulate an improved version using a spread-
sheet.
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Exercise 11
(Simulating 𝐌∞ from Core Exercise 6 with differ-
ent Δs)

Time Pop. (Δ = 0.1) Time Pop. (Δ = 0.2)

0.0 10 0.0 10

0.1 11.1 0.2 12.2

0.2 12.321 0.4 14.884

0.3 13.67631 0.6 18.15848

0.4 15.1807041 0.8 22.1533456

11.1 Compare Δ = 0.1 and Δ = 0.2. Which approx-
imation grows faster?

11.2 Graph the population estimates for Δ = 0.1
and Δ = 0.2 on the same plot. What does the
graph show?

11.3 What Δs give the largest estimate for the pop-
ulation at time 𝑡?

11.4 Is there a limit as Δ → 0?
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Exercise 11
(Simulating 𝐌∞ with different Δs)

0 1 2 3
0

20
40
60
80

100
120
140 Δ = 0.05

Δ = 0.2
Δ = 0.2
Δ = 0.3

11.1 Compare Δ = 0.1 and Δ = 0.2. Which approx-
imation grows faster?

11.2 Graph the population estimates for Δ = 0.1
and Δ = 0.2 on the same plot. What does the
graph show?

11.3 What Δs give the largest estimate for the pop-
ulation at time 𝑡?

11.4 Is there a limit as Δ → 0?
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Exercise 12
Consider the following models for starfish growth:

𝐌 # new children per year ∼ current population.
𝐍 # new children per year ∼ current population times resources available per individual.
𝐎 # new children per year ∼ current population times the fraction of total resources remaining.

12.1 Guess what the population vs. time curves look like for each model.

12.2 Create a differential equation for each model.

12.3 Simulate population vs. time curves for each model (but pick a common initial population).
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Exercise 13
Recall the models

𝐌 # new children per year ∼ current population.
𝐍 # new children per year ∼ current population times resources available per individual.
𝐎 # new children per year ∼ current population times the fraction of total resources remaining.

13.1 Determine which population grows fastest in the short term and which grows fastest in the long
term.

13.2 Are some models more sensitive to your choice of Δ when simulating?

13.3 Are your simulations for each model consistently underestimates? Overestimates?

13.4 Compare your simulated results with your guesses from question What did you guess correctly?
Where were you off the mark?
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Exercise 14
A simple model for population growth has the form

𝑃 ′(𝑡) = 𝑏 ⋅ 𝑃 (𝑡)

where 𝑏 is the birth rate.

14.1 Create a better model for population that includes both births and deaths.
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Exercise 15
Lotka-Volterra Predator-Prey models predict two
populations, 𝐹  (foxes) and 𝑅 (rabbits), simultane-
ously. They take the form

𝐹 ′(𝑡) = (𝐵𝐹 − 𝐷𝐹 ) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (𝐵𝑅 − 𝐷𝑅) ⋅ 𝑅(𝑡)

where 𝐵{?} stands for births and 𝐷{?} stands for
deaths.

We will assume:

(Pfoxes 1) Foxes die at a constant rate.
(Pfoxes 2) Foxes mate when food is plentiful.

(Prabbits) Rabbits mate at a constant rate.
(Ppredation) Foxes eat rabbits.

15.1 Speculate on when 𝐵𝐹 , 𝐷𝐹 , 𝐵𝑅, and 𝐷𝑅
would be at their maximum(s)/minimum(s),
given our assumptions.

15.2 Come up with appropriate formulas for 𝐵𝐹 ,
𝐵𝑅, 𝐷𝐹 , and 𝐷𝑅.
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Exercise 16
Suppose the population of 𝐹  (foxes) and 𝑅 (rabbits) evolves over time following the rule

𝐹 ′(𝑡) = (0.01 ⋅ 𝑅(𝑡) − 1.1) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (1.1 − 0.1 ⋅ 𝐹(𝑡)) ⋅ 𝑅(𝑡)

16.1 Simulate the population of foxes and rabbits with a spreadsheet.

16.2 Do the populations continue to grow/shrink forever? Are they cyclic?

16.3 Should the humps/valleys in the rabbit and fox populations be in phase? Out of phase?
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Exercise 17
Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

𝐹 ′(𝑡) = (0.01 ⋅ 𝑅(𝑡) − 1.1) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (1.1 − 0.1 ⋅ 𝐹(𝑡)) ⋅ 𝑅(𝑡)

17.1 Is the maximum population of the rabbits over/under estimated? Sometimes over, sometimes
under?

17.2 What about the foxes?

17.3 What about the min populations?
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Exercise 18
Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits
population.

𝐹 ′(𝑡) = (0.01 ⋅ 𝑅(𝑡) − 1.1) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (1.1 − 0.1 ⋅ 𝐹(𝑡)) ⋅ 𝑅(𝑡)

Component Graph & Phase Plane. For a differential equation
involving the functions 𝐹1, 𝐹2, …, 𝐹𝑛, and the variable 𝑡, the
component graphs are the 𝑛 graphs of (𝑡, 𝐹1(𝑡)), (𝑡, 𝐹2(𝑡)), ….

The phase plane or phase space associated with the differential
equation is the 𝑛-dimensional space with axes corresponding to
the values of 𝐹1, 𝐹2, …, 𝐹𝑛.

18.1 Plot the Fox vs. Rabbit population in the phase plane.

18.2 Should your plot show a closed curve or a spiral?

18.3 What “direction” do points move along the curve as time
increases? Justify by referring to the model.

18.4 What is easier to see from plots in the phase plane than from
component graphs (the graphs of fox and rabbit population
vs. time)?
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Exercise 19
Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes
and Rabbits population.

𝐹 ′(𝑡) = (0.01 ⋅ 𝑅(𝑡) − 1.1) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (1.1 − 0.1 ⋅ 𝐹(𝑡)) ⋅ 𝑅(𝑡)

Equilibrium Solution. An equilibrium solution
to a differential equation or system of differential
equations is a solution that is constant in the inde-
pendent variable(s).

19.1 By changing initial conditions, what is the “small-
est” curve you can get in the phase plane? What
happens at those initial conditions?

19.2 What should 𝐹 ′ and 𝑅′ be if 𝐹  and 𝑅 are equi-
librium solutions?

19.3 How many equilibrium solutions are there for the
fox-and-rabbit system? Justify your answer.

19.4 What do the equilibrium solutions look like in
the phase plane? What about their component
graphs?
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Exercise 20
Recall the logistic model for starfish growth (introduced
in Core Exercise 12):

𝐎 # new children per year ∼ current population
times the fraction of total resources remaining

which can be modeled with the equation

𝑃 ′(𝑡) = 𝑘 ⋅ 𝑃 (𝑡) ⋅ (1 − 𝑅𝑖
𝑅

⋅ 𝑃(𝑡))

where
• 𝑃(𝑡) is the population at time 𝑡
• 𝑘 is a constant of proportionality

• 𝑅 is the total number of resources

• 𝑅𝑖 is the resources that one starfish wants to
consume

Use 𝑘 = 1.1, 𝑅 = 1, and 𝑅𝑖 = 0.1 unless instructed oth-
erwise.

20.1 What are the equilibrium solutions for model 𝐎?

20.2 What does a “phase plane” for model 𝐎 look like?
What do graphs of equilibrium solutions look like?

20.3 Classify the behaviour of solutions that lie between
the equilibrium solutions. E.g., are they increasing,
decreasing, oscillating?
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Exercise 21

Classification of Equilibria. An equilibrium solution 𝑓  is called
• attracting if locally, solutions converge to 𝑓;

• repelling if there is a fixed distance so that locally, solu-
tions tend away from 𝑓  by that fixed distance;

• stable if for any fixed distance, locally, solutions stay
within that fixed distance of 𝑓; and,

• unstable if 𝑓  is not stable.

Classification of Equilibria (Formal). An equilibrium solution
𝑓  is called

• attracting at time 𝑡0 if there exists 𝜀 > 0 such that
for all solutions 𝑔 satisfying |𝑔(𝑡0) − 𝑓(𝑡0)| < 𝜀, we have
lim𝑡→∞ 𝑓(𝑡) = lim𝑡→∞ 𝑔(𝑡).

• repelling at time 𝑡0 if there exists 𝜀 > 0 and 𝛿 > 0 such that
for all solutions 𝑔 that satisfy 0 < |𝑔(𝑡0) − 𝑓(𝑡0)| < 𝜀 there
exists 𝑇 ∈ ℝ so that for all 𝑡 > 𝑇  we have |𝑔(𝑡) − 𝑓(𝑡)| > 𝛿.

• stable at time 𝑡0 if for all 𝜀 > 0 there exists a 𝛿 > 0 such
that for all solutions 𝑔 satisfying |𝑔(𝑡0) − 𝑓(𝑡0)| < 𝛿 we
have |𝑔(𝑡) − 𝑓(𝑡)| < 𝜀 for all 𝑡 > 𝑡0.

• unstable at time 𝑡0 if 𝑓  is not stable at time 𝑡0.

𝑓  is called attracting/repelling/stable/unstable if it has the cor-
responding property for all 𝑡.
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Exercise 21

Classification of Equilibria. An equilibrium solution
𝑓  is called

• attracting if locally, solutions converge to 𝑓;

• repelling if there is a fixed distance so that
locally, solutions tend away from 𝑓  by that fixed
distance;

• stable if for any fixed distance, locally, solutions
stay within that fixed distance of 𝑓; and,

• unstable if 𝑓  is not stable.

Let

𝐹 ′(𝑡) = ?

be an unknown differential equation with equilibrium
solution 𝑓(𝑡) = 1.

21.1 Draw an example of what solutions might look like
if 𝑓  is attracting.

21.2 Draw an example of what solutions might look like
if 𝑓  is repelling.

21.3 Draw an example of what solutions might look like
if 𝑓  is stable.

21.4 Could 𝑓  be stable but not attracting?
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Exercise 22

Classification of Equilibria. An equilibrium
solution 𝑓  is called

• attracting if locally, solutions converge to
𝑓;

• repelling if there is a fixed distance so that
locally, solutions tend away from 𝑓  by that
fixed distance;

• stable if for any fixed distance, locally,
solutions stay within that fixed distance of
𝑓; and,

• unstable if 𝑓  is not stable.

Recall the starfish population model 𝐎 given by

𝑃 ′(𝑡) = 𝑘 ⋅ 𝑃 (𝑡) ⋅ (1 − 𝑅𝑖
𝑅

⋅ 𝑃(𝑡))

Use 𝑘 = 1.1, 𝑅 = 1, and 𝑅𝑖 = 0.1 unless instructed
otherwise.

22.1 Classify the equilibrium solutions for model
𝐎 as attracting, repelling, stable, unstable, or
semi-stable.

22.2 Does changing 𝑘 change the nature of the
equilibrium solutions? How can you tell?
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Exercise 23
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A slope field is a plot of small segments of tangent lines to solu-
tions of a differential equation at different initial conditions.

On the left is a slope field for model 𝐎, available at

https://www.desmos.com/calculator/ghavqzqqjn

23.1 If you were sketching the slope field for model 𝐎 by
hand, what line would you sketch (a segment of) at
(5, 3)? Write an equation for that line.

23.2 How can you recognize equilibrium solutions in a slope
field?

23.3 Give qualitative descriptions of different solutions to the
differential equation used in model 𝐎 (i.e., use words to
describe them). Do all of those solutions make sense in
terms of model 𝐎?
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Exercise 24
https://www.desmos.com/3d/kvyztvmp0g

Three dimensional slope fields are possible, but
hard to interpret. This is a slope field for the Foxes–
Rabbits model.

24.1 What are the three dimensions in the plot?

24.2 What should the graph of an equilibrium solu-
tion look like?

24.3 What should the graph of a typical solution
look like?

24.4 What are ways to simplify the picture so we
can more easily analyze solutions?
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Exercise 25
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Phase Portrait. A phase portrait or phase diagram is the plot of a
vector field in phase space where each vector rooted at (𝑥, 𝑦) is tangent
to a solution curve passing through (𝑥, 𝑦) and its length is given by the
speed of a solution passing through (𝑥, 𝑦).

This is a phase portrait for the Foxes–Rabbits model (introduced in Core
Exercise 15).

https://www.desmos.com/calculator/vrk0q4espx

25.1 What do the 𝑥 and 𝑦 axes correspond to?

25.2 Identify the equilibria in the phase portrait. What are the lengths of
the vectors at those points?

25.3 Classify each equilibrium as stable/unstable.

25.4 Copy and paste data from your simulation spreadsheet into the
Desmos plot. Does the resulting curve fit with the picture?
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Exercise 26
Sketch your own vector field where the corresponding system of differential equations:

26.1 Has an attracting equilibrium solution.

26.2 Has a repelling equilibrium solution.

26.3 Has no equilibrium solutions.
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Exercise 27
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Recall the slope field for model 𝐎.

27.1 What would a phase portrait for model 𝐎 look
like? Draw it.

27.2 Where are the arrows the longest? Shortest?

27.3 How could you tell from a 1d phase portrait
whether an equilibrium solution is attracting/
repelling/etc.?
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Exercise 28
The following differential equation models the life
cycle of a tree. In the model

• 𝐻(𝑡) = height (in meters) of tree trunk at
time 𝑡

• 𝐴(𝑡) = surface area (in square meters) of all
leaves at time 𝑡

𝐻′(𝑡) = 0.3 · 𝐴(𝑡) − 𝑏 · 𝐻(𝑡)

𝐴′(𝑡) = −0.3 · (𝐻(𝑡))2 + 𝐴(𝑡)

and 0 ≤ 𝑏 ≤ 2.

28.1 Modify

https://www.desmos.com/calculator/vrk
0q4espx

to make a phase portrait for the tree model.

28.2 What do equilibrium solutions mean in terms
of tree growth?

28.3 For 𝑏 = 1 what are the equilibrium solu-
tion(s)?
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Exercise 29
The following differential equation models the life
cycle of a tree. In the model

• 𝐻(𝑡) = height (in meters) of tree trunk at
time 𝑡

• 𝐴(𝑡) = surface area (in square meters) of all
leaves at time 𝑡

𝐻′(𝑡) = 0.3 · 𝐴(𝑡) − 𝑏 · 𝐻(𝑡)

𝐴′(𝑡) = −0.3 · (𝐻(𝑡))2 + 𝐴(𝑡)

and 0 ≤ 𝑏 ≤ 2.

29.1 Fix a value of 𝑏 and use a spreadsheet to
simulate some solutions with different initial
conditions. Plot the results on your phase por-
trait from 28.1.

29.2 What will happen to a tree with
(𝐻(0), 𝐴(0)) = (20, 10)? Does this depend on
𝑏?

29.3 What will happen to a tree with
(𝐻(0), 𝐴(0)) = (10, 10)? Does this depend on
𝑏?
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Exercise 30
The tree model

𝐻′(𝑡) = 0.3 · 𝐴(𝑡) − 𝑏 · 𝐻(𝑡)

𝐴′(𝑡) = −0.3 · (𝐻(𝑡))2 + 𝐴(𝑡)

was based on the premises

(Pheight 1) CO2 is absorbed by the leaves and
turned directly into trunk height.

(Pheight 2) The tree is in a swamp and con-
stantly sinks at a speed proportional
to its height.

(Pleaves) Leaves grow proportionality to the
energy available.

(Penergy 1) The tree gains energy from the sun
proportionally to the leaf area.

(Penergy 2) The tree loses energy proportionally
to the square of its height.

30.1 How are the premises expressed in the differ-
ential equations?

30.2 What does the parameter 𝑏 represent (in the
real world)?

30.3 Applying Euler’s method to this system shows
solutions that pass from the 1st to 4th quad-
rants of the phase plane. Is this realistic?
Describe the life cycle of such a tree?
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Exercise 31
Recall the tree model

𝐻′(𝑡) = 0.3 · 𝐴(𝑡) − 𝑏 · 𝐻(𝑡)

𝐴′(𝑡) = −0.3 · (𝐻(𝑡))2 + 𝐴(𝑡)

31.1 Find all equilibrium solutions for 0 ≤ 𝑏 ≤ 2.

31.2 For which 𝑏 does a tree have the possibility of living forever? If the wind occasionally blew off a
few random leaves, would that change your answer?

31.3 Find a value 𝑏5 of 𝑏 so that there is an equilibrium with 𝐻 = 5.

Find a value 𝑏12 of 𝑏 so that there is an equilibrium with 𝐻 = 12.

31.4 Predict what happens to a tree near equilibrium in condition 𝑏5 and a tree near equilibrium in
condition 𝑏12.
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Exercise 32
Consider the system of differential equations

𝑥′(𝑡) = 𝑥(𝑡)
𝑦′(𝑡) = 2𝑦(𝑡)

32.1 Make a phase portrait for the system.

https://www.desmos.com/calculator/h3
wtwjghv0

32.1 What are the equilibrium solution(s) of the
system?

32.2 Find a formula for 𝑥(𝑡) and 𝑦(𝑡) that satisfy the
initial conditions (𝑥(0), 𝑦(0)) = (𝑥0, 𝑦0).

32.3 Let ⃗𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡)). Find a matrix 𝐴 so that
the differential equation can be equivalently
expressed as

⃗𝑟′(𝑡) = 𝐴 ⃗𝑟(𝑡).

32.4 Write a solution to ⃗𝑟′ = 𝐴 ⃗𝑟 (where 𝐴 is the
matrix you came up with).
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Exercise 33
Let 𝐴 be an unknown matrix and suppose ⃗𝑝 and ⃗𝑞 are solutions to ⃗𝑟′ = 𝐴 ⃗𝑟.

33.1 Is ⃗𝑠(𝑡) = ⃗𝑝(𝑡) + ⃗𝑞(𝑡) a solution to ⃗𝑟′ = 𝐴 ⃗𝑟? Justify your answer.

33.2 Can you construct other solutions from ⃗𝑝 and ⃗𝑞? If yes, how so?
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Exercise 34

Linear Dependence & Independence (Alge-
braic). The vectors ⃗𝑣1, ⃗𝑣2, …, ⃗𝑣𝑛 are linearly
dependent if there is a non-trivial linear combi-
nation of ⃗𝑣1, …, ⃗𝑣𝑛 that equals the zero vector.
Otherwise they are linearly independent.

Define

⃗𝑝(𝑡) = (𝑒𝑡

0) ⃗𝑞(𝑡) = (4𝑒𝑡

0 ) ℎ⃗(𝑡) = ( 0
𝑒2𝑡) ⃗𝑧(𝑡) = ( 0

𝑒3𝑡).

34.1 Are ⃗𝑝 and ⃗𝑞 linearly independent or linearly
dependent? Justify with the definition.

34.2 Are ⃗𝑝 and ℎ⃗ linearly independent or linearly
dependent? Justify with the definition.

34.3 Are ℎ⃗ and ⃗𝑧 linearly independent or linearly
dependent? Justify with the definition.

34.4 Is the set of three functions { ⃗𝑝, ℎ⃗, ⃗𝑧} linearly
independent or linearly dependent? Justify
with the definition.
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Exercise 35
Recall

⃗𝑝(𝑡) = [𝑒𝑡

0 ] ⃗𝑞(𝑡) = [4𝑒𝑡

0 ] ℎ⃗(𝑡) = [ 0
𝑒2𝑡] ⃗𝑧(𝑡) = [ 0

𝑒3𝑡].

35.1 Describe span{ ⃗𝑝, ℎ⃗}. What is its dimension? What is a basis for it?

35.2 Let 𝑆 be the set of all solutions to ⃗𝑟′(𝑡) = [1
0

0
2] ⃗𝑟(𝑡). (You’ve seen this equation before.)

Is 𝑆 a subspace? If so, what is its dimension?

35.3 Provided 𝑆 is a subspace, give a basis for 𝑆.
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Exercise 36
Consider the differential equation

𝑦′(𝑡) = 2 · 𝑦(𝑡).

36.1 Write a solution whose graph passes through
the point (𝑡, 𝑦) = (0, 3).

36.2 Write a solution whose graph passes through
the point (𝑡, 𝑦) = (0, 𝑦0).

36.3 Write a solution whose graph passes through
the point (𝑡, 𝑦) = (𝑡0, 𝑦0).

36.4 Consider the following argument:

For every point (𝑡0, 𝑦0), there is a corre-
sponding solution to 𝑦′(𝑡) = 2 · 𝑦(𝑡).

Since {(𝑡0, 𝑦0) : 𝑡0, 𝑦0 ∈ ℝ} is two dimen-
sional, this means the set of solutions to
𝑦′(𝑡) = 2 · 𝑦(𝑡) is two dimensional.

Do you agree? Explain.
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Exercise 37
XXX TO BE REMOVED - ADDED TO MODULE 6 PRACTICE
PROBLEMS

Theorem (Existence & Uniqueness 1)

The system of differential equations represented by
⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) + ⃗𝑝 (or the single differential equation

𝑦′ = 𝑎𝑦 + 𝑏) has a unique solution passing through
every initial condition. Further, the domain of every
solution is ℝ.

Let 𝑆 be the set of all solutions to ⃗𝑟(𝑡) = [1
0

0
2] ⃗𝑟(𝑡).

37.1 Show that dim(𝑆) ≥ 2 by finding at least two linearly
independent solutions.

37.2 Let 𝐼  be the set of all initial conditions. What is 𝐼?

37.3 Show that dim(𝑆) ≤ 3 by applying the theorem to the
set of initial conditions.

37.4 Can two points in 𝐼  correspond to the same solution?
Explain?

37.5 Find a subset 𝑈 ⊆ 𝐼  so that every solution corresponds
to a unique point in 𝑈 .

37.6 Show that dim(𝑆) ≤ 2.

37.7 Suppose 𝑀  is an 𝑛 × 𝑛 matrix. Consider the differ-
ential equation ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡). If you have found 𝑛
linearly independent solutions, can you determine the
dimension of the set of all solutions? Explain.
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Exercise 38
Consider the system

𝑥′(𝑡) = 2𝑥(𝑡)
𝑦′(𝑡) = 3𝑦(𝑡)

38.1 Rewrite the system in matrix form.

38.2 Classify the following as solutions or non-solutions to
the system.

⃗𝑟1(𝑡) = 𝑒2𝑡 ⃗𝑟2(𝑡) = [𝑒2𝑡

0 ]

⃗𝑟3(𝑡) = [ 𝑒2𝑡

4𝑒3𝑡] ⃗𝑟4(𝑡) = [𝑒3𝑡

𝑒2𝑡]

⃗𝑟5(𝑡) = [0
0]

38.1 State the definition of an eigenvector for the matrix 𝑀 .

38.2 What should the definition of an eigen solution be for
this system?

38.3 Which functions from 38.2 are eigen solutions?

38.4 Find an eigen solution ⃗𝑟6 that is linearly independent
from ⃗𝑟2.

38.5 Let 𝑆 = span{ ⃗𝑟2, ⃗𝑟6}. Does 𝑆 contain all solutions to the
system? Justify your answer.
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Exercise 39
Recall the system

𝑥′(𝑡) = 2𝑥(𝑡)
𝑦′(𝑡) = 3𝑦(𝑡)

has eigen solutions ⃗𝑟2(𝑡) = [𝑒2𝑡

0 ] and ⃗𝑟6(𝑡) = [ 0
𝑒3𝑡]

39.1 Sketch ⃗𝑟2 and ⃗𝑟6 in the phase plane.

39.2 Use

https://www.desmos.com/calculator/h3
wtwjghv0

to make a phase portrait for the system.

39.3

In which phase plane above is the dashed
(green) curve the graph of a solution to the
system? Explain.
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Exercise 40
Suppose 𝐴 is a 2 × 2 matrix and ⃗𝑠1 and ⃗𝑠2 are eigen solutions to ⃗𝑟′ = 𝐴 ⃗𝑟 with eigenvalues 1 and −1,
respectively.

40.1 Write possible formulas for ⃗𝑠1(𝑡) and ⃗𝑠2(𝑡).
40.2 Sketch a phase plane with graphs of ⃗𝑠1 and ⃗𝑠2 on it.

40.3 Add a non-eigen solution to your sketch.

40.4 Sketch a possible phase portrait for ⃗𝑟′ = 𝐴 ⃗𝑟. Can you extend your phase portrait to all quadrants?
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Exercise 41
Consider the following phase portrait for a system
of the form ⃗𝑟′ = 𝐴 ⃗𝑟 for an unknown matrix 𝐴.

41.1 Can you identify any eigen solutions?

41.2 What are the eigenvalues of 𝐴? What are their
signs?
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Exercise 42
Consider the differential equation ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡)
where 𝑀 = [0

1
1
0].

42.1 Verify that [1
1] and [ 1

−1] are eigenvectors for

𝑀 . What are the corresponding eigenvalues?

42.2 (a) Is ⃗𝑟1(𝑡) = 𝑒𝑡[1
0] a solution to the differen-

tial equation? An eigen solution?

(b) Is ⃗𝑟2(𝑡) = 𝑒𝑡[1
1] a solution to the differen-

tial equation? An eigen solution?

(c) Is ⃗𝑟3(𝑡) = 𝑒2𝑡[ 1
−1] a solution to the differ-

ential equation? An eigen solution?

42.3 Find an eigen solution for the system corre-
sponding to the eigenvalue −1. Write your
answer in vector form.

42.4 Let ⃗𝑣 be an eigenvector for 𝑀  with eigenvalue
𝜆. Explain how to write down an eigen solu-
tion to ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) with eigenvalue 𝜆.

42.5 Let ⃗𝑣 ≠ ⃗0 be a non-eigenvector for 𝑀 . Could
⃗𝑟(𝑡) = 𝑒𝜆𝑡 ⃗𝑣 be a solution to ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) for

some 𝜆? Explain.
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Exercise 43

Recall the differential equation ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) where 𝑀 = [0
1

1
0].

43.1 Write down a general solution to the differential equation.

43.2 Write down a solution to the initial value problem ⃗𝑟(0) = [𝑥0
𝑦0

].

43.3 Are your answers to the first two parts the same? Do they contain the same information?
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Exercise 44
The phase portrait for a differential equation aris-
ing from the matrix [0

1
1
0] (left) and [1

0
0

−1] (right)

are shown.

Both have eigenvalues ±1, but they have different
eigenvectors.

44.1 How are the phase portraits related to each
other?

44.2 Suppose 𝑃  is a 2 × 2 matrix with eigenvalues
±1. In what ways could the phase portrait
for ⃗𝑟′(𝑡) = 𝑃 ⃗𝑟(𝑡) look different from the above
portraits? In what way(s) must it look the
same?
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Exercise 45
Consider the following phase plane with lines in the direc-
tion of ⃗𝑎 (dashed green) and ⃗𝑏 (red).

⃗𝑏

⃗𝑎

45.1 Sketch a phase portrait where the directions ⃗𝑎 and ⃗𝑏
correspond to eigen solutions with eigenvalues that
are:

sign for ⃗𝑎 sign for ⃗𝑏

1 pos pos

2 neg neg

3 neg pos

4 pos neg

5 pos zero

45.2 Classify the solution at the origin for situations (1)–(5)
as stable or unstable.

45.3 Would any of your classifications in the previous part
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Exercise 46
You are examining a differential equation ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) for an unknown 2 × 2 matrix 𝑀 .

You would like to determine whether ⃗𝑟(𝑡) = [0
0] is stable, unstable, attracting, or repelling.

46.1 Come up with a rule to determine the nature of the equilibrium solution ⃗𝑟(𝑡) = [0
0] based on the

eigenvalues of 𝑀  (provided there exist two linearly independent eigen solutions).

46.2 Consider the system of differential equations

𝑥′(𝑡) = 𝑥(𝑡) + 2 ⋅ 𝑦(𝑡)
𝑦′(𝑡) = 3 ⋅ 𝑥(𝑡) − 4 ⋅ 𝑦(𝑡)

(a) Classify the stability of the equilibrium solution (𝑥(𝑡), 𝑦(𝑡)) = (0, 0) using any method you want.

(b) Justify your answer analytically using eigenvalues.
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Exercise 47
Consider the following model of Social Media Usage where

𝑃(𝑡) = millions of social media posts at year 𝑡
𝑈(𝑡) = millions of social media users at year 𝑡

• (P1𝑃 ) Ignoring all else, each year posts decay propor-
tionally to the current number of posts with propor-
tionality constant 1.

• (P2𝑃 ) Ignoring all else (independent of decay), posts
grow by a constant amount of 2 million posts every
year.

• (P1𝑈) Ignoring all else, social media users increase/
decrease in proportion to the number of posts.

• (P2𝑈) Ignoring all else, social media users increase/
decrease in proportion to the number of users.

• (P3𝑈) Ignoring all else, 1 million people stop using the
platform every year.

A school intervention is described by the parameter 𝑎 ∈
[−1

2 , 1]:
• After the intervention, the proportionality constant for

(P1𝑈) is 1 − 𝑎.

• After the intervention, the proportionality constant for
(P2𝑈) is 𝑎.

47.1 Model this situation using a system of differential equa-
tions. Explain which parts of your model correspond to
which premise(s).
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Exercise 48
The SM model of Social Media Usage is

𝑃 ′ = −𝑃 + 2
𝑈 ′ = (1 − 𝑎)𝑃 + 𝑎𝑈 − 1

where

𝑃(𝑡) = millions of social media posts at year 𝑡
𝑈(𝑡) = millions of social media users at year 𝑡

𝑎 ∈ [−1
2
, 1]

48.1 What are the equilibrium solution(s)?

48.2 Make a phase portrait for the system.

https://www.desmos.com/calculator/h3
wtwjghv0

48.3 Use phase portraits to conjecture: what do you
think happens to the equilibrium solution(s)
as 𝑎 transitions from negative to positive? Jus-
tify with a computation.
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Exercise 49
The SM model of Social Media Usage is

𝑃 ′ = −𝑃 + 2
𝑈 ′ = (1 − 𝑎)𝑃 + 𝑎𝑈 − 1

where

𝑃(𝑡) = millions of social media posts at year 𝑡
𝑈(𝑡) = millions of social media users at year 𝑡

𝑎 ∈ [−1
2
, 1]

49.1 Can you rewrite the system in matrix form? I.e., in
the form ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) for some matrix 𝑀  where
⃗𝑟(𝑡) = [𝑃(𝑡)

𝑈(𝑡)].

49.2 Define ⃗𝑠(𝑡) = [𝑆𝑃(𝑡)
𝑆𝑈(𝑡)

] to be the displacement from

equilibrium in the SM model at time 𝑡 (provided an
equilibrium exists).
(a) Write ⃗𝑠 in terms of 𝑃  and 𝑈 .

(b) Find ⃗𝑠′ in terms of 𝑃  and 𝑈 .

(c) Find ⃗𝑠′ in terms of 𝑆𝑃  and 𝑆𝑈 .

(d) Can one of your differential equations for ⃗𝑠 be
written in matrix form? Which one?

(e) Analytically classify the equilibrium solution for
your differential equation for ⃗𝑠 when 𝑎 = −1

2 ,
𝑎 = 1

2 , and 𝑎 = 1. (You may use a calculator for
computing eigenvectors/values.)
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Exercise 50
The SM model of Social Media Usage is

𝑃 ′ = −𝑃 + 2
𝑈 ′ = (1 − 𝑎)𝑃 + 𝑎𝑈 − 1

where

𝑃(𝑡) = millions of social media posts at year 𝑡
𝑈(𝑡) = millions of social media users at year 𝑡

𝑎 ∈ [−1
2
, 1]

Some politicians have been looking at the model. They made
the following posts on social media:

1. The model shows the number of posts will always be
increasing. SAD!

2. I see the number of social media users always increases.
That’s not what we want!

3. It looks like social media is just a fad. Although users
initially increase, they eventually settle down.

4. I have a dream! That one day there will be social media
posts, but eventually there will be no social media users!

50.1 For each social media post, make an educated guess
about what initial conditions and what value(s) of 𝑎 the
politician was considering.

50.2 The school board wants to limit the number of social
media users to fewer than 10 million. Make a recom-
mendation about what value of 𝑎 they should target.
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Exercise 51
Consider the following FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

• (P1𝐹 ) Ignoring all else, the number of parasites decays
in proportion to its population (with constant 1).

• (P2𝐹 ) Ignoring all else, parasite numbers grow in pro-
portion to the number of hosts (with constant 1).

• (P1𝐷) Ignoring all else, hosts numbers grow in propor-
tion to their current number (with constant 1).

• (P2𝐷) Ignoring all else, host numbers decrease in pro-
portion to the number of parasites (with constant 2).

• (P1𝑐) Anti-flea collars remove 2 million fleas per year.

• (P2𝑐) Constant dog breeding adds 1 thousand dogs
per year.

51.1 Write a system of differential equations for the
FD model.

51.2 Can you rewrite the system in matrix form ⃗𝑟′ =
𝑀 ⃗𝑟? What about in affine form ⃗𝑟′ = 𝑀 ⃗𝑟 + ⃗𝑏?

51.3 Make a phase portrait for your model.

51.4 What should solutions to the system look like in
the phase plane? What are the equilibrium solu-
tion(s)?
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Exercise 52
Recall the FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

⃗𝑟(𝑡) = [𝐹(𝑡)
𝐷(𝑡)]

and

⃗𝑟′(𝑡) = [−1
−2

1
1] ⃗𝑟(𝑡) + [−2

1 ]

Define ⃗𝑠(𝑡) to be the displacement of ⃗𝑟(𝑡) from
equilibrium at time 𝑡.

52.1 Find a formula for ⃗𝑠 in terms of ⃗𝑟.

52.2 Can you find a matrix 𝑀  so that ⃗𝑠′(𝑡) =
𝑀 ⃗𝑠(𝑡)?

52.3 What are the eigenvalues of 𝑀?

52.4 Find an eigenvector for each eigenvalue of 𝑀 .

52.5 What are the eigen solutions for ⃗𝑠′ = 𝑀 ⃗𝑠?
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Exercise 53
Recall the FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

⃗𝑟(𝑡) = [𝐹(𝑡)
𝐷(𝑡)] ⃗𝑠(𝑡) = ⃗𝑟(𝑡) − [3

5]

and

⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡) where 𝑀 = [−1
−2

1
1].

This equation has eigen solutions

⃗𝑠1(𝑡) = 𝑒𝑖𝑡[1 − 𝑖
2 ]

⃗𝑠2(𝑡) = 𝑒−𝑖𝑡[1 + 𝑖
2 ].

53.1 Recall Euler’s formula 𝑒𝑖𝑡 = cos(𝑡) + 𝑖 sin(𝑡).
(a) Use Euler’s formula to expand ⃗𝑠1 + ⃗𝑠2. Are

there any imaginary numbers remaining?

(b) Use Euler’s formula to expand 𝑖( ⃗𝑠1 − ⃗𝑠2). Are
there any imaginary numbers remaining?

53.2 Verify that your formulas for ⃗𝑠1 + ⃗𝑠2 and 𝑖( ⃗𝑠1 − ⃗𝑠2)
are solutions to ⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡).

53.3 Can you give a third real solution to ⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡)?
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Exercise 54
Recall the FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

⃗𝑟(𝑡) = [𝐹(𝑡)
𝐷(𝑡)] ⃗𝑠(𝑡) = ⃗𝑟(𝑡) − [3

5]

and

⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡) where 𝑀 = [−1
−2

1
1].

54.1 What is the dimension of the space of solutions
to ⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡)?

54.2 Give a basis for all solutions to ⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡).
54.3 Find a solution satisfying ⃗𝑠(0) = [1

3].

54.4 Using what you know, find a general formula
for ⃗𝑟(𝑡).

54.5 Find a formula for ⃗𝑟(𝑡) satisfying ⃗𝑟(0) = [4
8].
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Exercise 55
Recall the FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

⃗𝑟(𝑡) = [𝐹(𝑡)
𝐷(𝑡)] ⃗𝑠(𝑡) = ⃗𝑟(𝑡) − [3

5]

and

⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡) where 𝑀 = [−1
−2

1
1].

Some research is being done on a shampoo for the dogs. It
affects flea and dog reproduction:

• (P𝑆𝐹 ) Ignoring all else, the number of parasites decays
in proportion to its population with constant 1 + 𝑎.

• (P𝑆𝐷) Ignoring all else, hosts numbers grow in propor-
tion to their current number with constant 1 − 𝑎.

• −1 ≤ 𝑎 ≤ 1.

These premises replace (P1𝐹 ) and (P1𝐷).

55.1 Modify the previous FD model to incorporate the effects
of the shampoo.

55.2 Make a phase portrait for the FD Shampoo model.

55.3 Find the equilibrium solutions for the FD Shampoo
model.

55.4 For each equilibrium solution determine its stability/
instability/etc.

55.5 Analytically justify your conclusions about stability/
instability/etc.

57 © Bernardo Galvão-Sousa & Jason Siefken, 2024–2025



Exercise 56
Consider the differential equation

⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡) where 𝑀 = [−1
2

−4
3 ]

56.1 Make a phase portrait. Based on your phase portrait, classify the equilibrium solution.

https://www.desmos.com/calculator/h3wtwjghv0
56.1 Find eigen solutions for this differential equation (you may use a calculator/computer to assist).

56.2 Find a general real solution.

56.3 Analytically classify the equilibrium solution.
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Exercise 57
Recall the tree model from Core Exercise 28:

• 𝐻(𝑡) = height (in meters) of tree trunk at
time 𝑡

• 𝐴(𝑡) = surface area (in square meters) of all
leaves at time 𝑡

𝐻′(𝑡) = 0.3 ⋅ 𝐴(𝑡) − 𝑏 ⋅ 𝐻(𝑡)

𝐴′(𝑡) = −0.3 ⋅ (𝐻(𝑡))2 + 𝐴(𝑡)

and 0 ≤ 𝑏 ≤ 2

A phase portrait for this model is available at

https://www.desmos.com/calculator/tvjag852
ja

57.1 Visually classify the stability of each equi-
librium solution as attracting/repelling/etc.
Does the stability depend on 𝑏? Are you confi-
dent in your visual assessment?

57.2 Can you rewrite the system in matrix/affine
form? Why or why not?
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Exercise 58
A simple logistic model for a population is

d𝑃
d𝑡

= 𝑃(𝑡) ⋅ (1 − 𝑃(𝑡)
2

)

where 𝑃(𝑡) represents the population at time 𝑡.

We’d like to approximate d𝑃
d𝑡  when 𝑃 ≈ 1

2 .

58.1 What is the value of d𝑃
d𝑡  when 𝑃 = 1

2?

58.2 Define 𝑓(𝑃 ) = 𝑃 ⋅ (1 − 𝑃
2 ) and notice d𝑃

d𝑡 =
𝑓(𝑃(𝑡)).

Approximate d𝑃
d𝑡  (i.e, approximate 𝑓) when

𝑃 = 1
2 + Δ and Δ is small.

58.3 Write down an approximation 𝑆(Δ) that ap-
proximates d𝑃

d𝑡  when 𝑃  is Δ away from 1
2 .

58.4 Let 𝐴1
2
(𝑃 ) be an affine approximation to d𝑃

d𝑡
that is a good approximation when 𝑃 ≈ 1

2 .
Find a formula for 𝐴1

2
(𝑃 ).

58.5 Find additional affine approximations to d𝑃
d𝑡

centered at each equilibrium solution.
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Exercise 59
Based on our calculations from Core Exercise 58, we have several different affine approximations.

(Original) 𝑃 ′ = 𝑃(1 − 𝑃
2 ) (https://www.desmos.com/calculator/v1coz4shtw)

(𝐴{1
2}) 𝑃 ′ ≈ 3

8 + 1
2(𝑃 − 1

2) (https://www.desmos.com/calculator/zsb2apxhqs)

(𝐴0) 𝑃 ′ ≈ 𝑃 (https://www.desmos.com/calculator/vw48bvqgrc)

(𝐴2) 𝑃 ′ ≈ −(𝑃 − 2) (https://www.desmos.com/calculator/i2utk6vnqh)

59.1 What are the similarities/differences in the Desmos plots of solutions to the original equation vs.
the other equations?

59.2 Does the nature of the equilibrium solutions change when using an affine approximation?

59.3 Classify each equilibrium solution of the original equation by using affine approximations.
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Exercise 60
Consider the differential equation whose slope field
is sketched below.

𝑃 ′(𝑡) = −𝑃(𝑡) ⋅ (0.1 + 𝑃(𝑡)) ⋅ (0.2 + 𝑃(𝑡))

= −(𝑃(𝑡))3 − 0.3 ⋅ (𝑃 (𝑡))2 − 0.02 ⋅ 𝑃 (𝑡)

https://www.desmos.com/calculator/ikp9rgo0kv −1

0

1

60.1 Find all equilibrium solutions.

60.2 Use affine approximations to classify the equi-
librium solutions as stable/unstable/etc.
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Exercise 61
To make a 1d affine approximation of a function 𝑓
at the point 𝐸 we have the formula

𝑓(𝑥) ≈ 𝑓(𝐸) + 𝑓 ′(𝐸)(𝑥 − 𝐸).

To make a 2d approximation of a function
⃗𝐹 (𝑥, 𝑦) = (𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦)) at the point ⃗𝐸, we

have a similar formula

⃗𝐹 (𝑥, 𝑦) ≈ ⃗𝐹( ⃗𝐸) + 𝐷 ⃗𝐹 ( ⃗𝐸)([𝑥
𝑦] − ⃗𝐸)

where 𝐷 ⃗𝐹 ( ⃗𝐸) is the total derivative of ⃗𝐹  at ⃗𝐸,
which can be expressed as the matrix

𝐷 ⃗𝐹 ( ⃗𝐸) =
[
[
[

𝜕𝐹1
𝜕𝑥
𝜕𝐹2
𝜕𝑥

𝜕𝐹1
𝜕𝑦
𝜕𝐹2
𝜕𝑦 ]

]
]

evaluated at ⃗𝐸.
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Exercise 61
Recall our model from Exercise Core Exercise 28 for the life
cycle of a tree where 𝐻(𝑡) was height, 𝐴(𝑡) was the leaves’
surface area, and 𝑡 was time:

𝐻′(𝑡) = 0.3 ⋅ 𝐴(𝑡) − 𝑏 ⋅ 𝐻(𝑡)

𝐴′(𝑡) = −0.3 ⋅ (𝐻(𝑡))2 + 𝐴(𝑡)

with 0 ≤ 𝑏 ≤ 2

We know the following:
• The equations cannot be written in matrix form.

• The equilibrium points are (0, 0) and (100
9 𝑏, 1000

27 𝑏2).

We want to find an affine approximation to the system.

Define ⃗𝐹 (𝐻, 𝐴) = (𝐻′, 𝐴′)

61.1 Find the matrix for 𝐷 ⃗𝐹 , the total derivative of ⃗𝐹 .

61.2 Create an affine approximation to ⃗𝐹  around ⃗𝑒 = (0, 0)
and use this to write an approximation to the original
system.

61.3 In the original system, the equilibrium (0, 0) is unstable
and not repelling. Justify this using your affine approx-
imation.

61.4 Create an affine approximation to ⃗𝐹  around ⃗𝑒 =
(100

9 𝑏, 1000
27 𝑏2) and use this to write an approximation to

the original system.

61.5 Make a phase portrait for the original system and your
approximation from part 61.4. How do they compare?

61.6 Analyze the nature of the equilibrium solution in part
61.4 using eigen techniques. Relate your analysis to the
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Exercise 62
Define ⃗𝐹 (𝑥, 𝑦) = [ 𝑦

−𝑥𝑦+𝑥2−𝑥−𝑦] and consider the differential equation

[𝑥′

𝑦′] = ⃗𝐹 (𝑥, 𝑦).

62.1 Make a phase portrait for this differential equation. Based on your phase portrait, can you determine
the nature of the equilibrium at (0, 0)?

https://www.desmos.com/calculator/peby3xd7jj

62.2 Find an affine approximation to ⃗𝐹  centered at (0, 0).
62.3 Write down a differential equation that approximates the original equation near (0, 0).
62.4 Analyze the nature of the equilibrium solution ⃗𝑟(𝑡) = (0, 0) using eigen techniques. (You may use

a computer to assist in eigen computations.) Relate your analysis to the original system.
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Exercise 63
Consider a spring with a mass attached to the end.

M

Let 𝑥(𝑡) = displacement to the right of the spring from equilibrium
at time 𝑡.

Recall from Physics the following laws:

• (HL) Hooke’s Law: For an elastic spring, force is proportional
to negative the displacement from equilibrium.

• (NL) Newton’s Second Law: Force is proportional to acceler-
ation (the proportionality constant is called mass).

• (ML) Laws of Motion: Velocity is the time derivative of dis-
placement and acceleration is the time derivative of velocity.

63.1 Model 𝑥(𝑡) with a differential equation.

For the remaining parts, assume the elasticity of the spring is
𝑘 = 1 and the mass is 1.

63.2 Suppose the spring is stretched 0.5m from equilibrium and then
let go (at time 𝑡 = 0).
(a) At 𝑡 = 0, what are 𝑥, 𝑥′, and 𝑥″?

(b) Modify Euler’s method to approximate a solution to the
initial value problem.

63.3 Introduce the auxiliary equation 𝑦 = 𝑥′. Can the second-order
spring equation be rewritten as a first-order system involving
𝑥′ and 𝑦′? If so, do it.

63.4 Simulate the system you found in the previous part using Euler’s
method.
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Exercise 64
Recall a spring with a mass attached to the end.

M

𝑥(𝑡) = displacement to the right of the spring from
equilibrium at time 𝑡

We have two competing models

𝑥″ = −𝑘𝑥 (A)

[𝑥
𝑦]

′

= [ 0
−𝑘

1
0][𝑥

𝑦] (B)

where 𝑦 = 𝑥′

XXX CHANGE EQUATION LABELS TO (A) AND (B)
IN THE BOOK VERSION

64.1 Make a phase portrait for system (B). What are
the axes on the phase portrait? What do you
expect general solutions to look like?

64.2 Use eigenvalues/eigenvectors to find a general
solution to (B). (You may use a computer to
compute eigenvalues/vectors.)

64.3 Use your solution to (B) to find a general
solution to (A).
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Exercise 65
Consider the second-order differential equation

𝑥″ = −(1 + 𝑥) ⋅ 𝑥′ + 𝑥2 − 𝑥

65.1 Rewrite the second-order differential equation as a
system of first-order differential equations. (Hint: you
may need to introduce an auxiliary equation.)

65.2 The following Desmos link plots a phase portrait and
draws an Euler approximation on the phase portrait:

https://www.desmos.com/calculator/fvqxqp6eds

Use the link to make a phase portrait for your system
and answer the following questions:
(a) Are there initial conditions with 𝑥(0) < 0 so that a

solution 𝑥(𝑡) is always increasing?

(b) Are there initial conditions with 𝑥(0) < 0 so that a
solution 𝑥(𝑡) first decreases and then increases?

65.3 Show that 𝑥(𝑡) = 0 is an equilibrium solution for this
equation.

65.4 Use linearization and eigenvalues to classify the equi-
librium (𝑥, 𝑥′) = (0, 0) in phase space.

65.5 Let 𝑥(𝑡) be a solution to the original equation and
suppose 𝑥(0) = 𝛿1 ≈ 0.
(a) If 𝑥′(0) = 𝛿2 ≈ 0, speculate on the long term behav-

iour of 𝑥(𝑡).
(b) If we put no conditions on 𝑥′(0) will your answer

be the same? Explain.
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Exercise 66
Boundary Value Problems

Recall the spring-mass system modeled by

𝑥″ = −𝑥

We would like to use the spring-mass system to ring a
bell at regular intervals, so we put a hammer at the end
of the spring. Whenever the displacement is maximal, the
hammer strikes a bell producing a ring.

66.1 Convert the spring-mass system into a system of differ-
ential equations. Make a phase portrait for the system
using the following Desmos link:

https://www.desmos.com/calculator/fvqxqp6eds

66.2 In the Options Euler on Desmos, adjust Δ and the
number of steps so that simulated solutions are only
shown for 𝑡 ∈ [0, 1].

Use simulations to answer the remaining questions.

66.3 You start by displacing the hammer by 1m and letting
go. Is it possible that the bell rings every 1 second?

66.4 You start by displacing the hammer by 1m and giving
the hammer a push. Is it possible that the bell rings
every 1 second?

66.5 What is the smallest amount of time between consec-
utive rings (given a positive displacement)?
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Exercise 67
Boundary Value Problems

Recall the spring-mass system modeled by

𝑥″ = −𝑥

We would like to use the spring-mass system to ring a
bell at regular intervals, so we put a hammer at the end
of the spring. Whenever the displacement is maximal, the
hammer strikes a bell producing a ring.

Consider the subspaces

𝑆1 = span{sin(𝑡), cos(𝑡)} 𝑆2 = {𝐴 cos(𝑡 + 𝑑) : 𝐴, 𝑑 ∈ ℝ}

67.1 What dimension is each subspace?

67.2 Which subspaces are sets of solutions to the spring-
mass system?

67.3 Use what you know about complete solutions and
linear algebra to prove 𝑆1 = 𝑆2.

Use your knowledge about 𝑆1 and 𝑆2 to analytically
answer the remaining questions.

67.4 You start by displacing the hammer by 1m and letting
go. Is it possible that the bell rings every 1 second?

67.5 You start by displacing the hammer by 1m and giving
the hammer a push. Is it possible that the bell rings
every 1 second?

67.6 What is the smallest amount of time between consec-
utive rings (given a positive displacement)?
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Exercise 68
Boundary Value Problems

A boundary value problem is a differential equation
paired with two conditions at different values of 𝑡.

Consider the following boundary value problems:

(i) (ii) (iii)

𝑥″ = −𝑥 𝑥″ = −𝑥 𝑥″ = −𝑥
𝑥(0) = 1 𝑥(0) = 1 𝑥(0) = 1
𝑥(𝜋) = 1 𝑥(𝜋) = −1 𝑥(𝜋

2 ) = 0

68.1 Using phase portraits and simulations, deter-
mine how many solutions each boundary
value problem has.

68.2 Can you find analytic arguments to justify your
conclusions?
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Exercise 69
Existence and Uniqueness

Whether a solution to a differential equation exists or is unique is a
hard question with many partial answers.

Theorem (Existence and Uniqueness II)

Let 𝐹(𝑡, 𝑥, 𝑥′) = 0 with 𝑥(𝑡0) = 𝑥0 describe an initial value
problem.

• IF 𝐹(𝑡, 𝑥, 𝑥′) = 𝑥′(𝑡) + 𝑝(𝑡)𝑥(𝑡) + 𝑔(𝑡) for some functions
𝑝 and 𝑔

• AND 𝑝 and 𝑔 are continuous on an open interval 𝐼  con-
taining 𝑡0

• THEN the initial value problem has a unique solution on
𝐼 .

69.1 The theorem expresses differential equations in the form
𝐹(𝑡, 𝑥, 𝑥′, 𝑥″, …) = 0 (i.e. as a level set of some function 𝐹 ).

Rewrite the following differential equations in the form
𝐹(𝑡, 𝑥, 𝑥′, 𝑥″, …) = 0:
(a) 𝑥″ = −𝑘𝑥
(b) 𝑥″ = −𝑥 ⋅ 𝑥′ + 𝑥2

(c) 𝑥‴ = (𝑥′)2 − cos 𝑥
69.2 Which of the following does the theorem say must have a

unique solution on an interval containing 0?
(a) 𝑦′ = 3

2𝑦1
3  with 𝑦(0) = 0

(b) 𝑥′(𝑡) = ⌊𝑡⌋𝑥(𝑡) with 𝑥(0) = 0
(c) 𝑥′(𝑡) = ⌊𝑡 − 1

2⌋𝑥(𝑡) + 𝑡2 with 𝑥(0) = 0

Note: ⌊𝑥⌋ is the floor of 𝑥, i.e., the largest integer less than or
equal to 𝑥.
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Exercise 70
Consider a rope hanging from two poles.

𝑑 𝑑 + Δ

⃗𝐹𝑔

⃗𝑇𝑅
⃗𝑇𝐿

𝐻(𝑑) = height of the rope above ground at position 𝑑.

We will consider the following premises and physics laws:
• (𝑃𝐷) The linear density of the rope is constant: 𝜌 kg/m

• (𝑃𝐺) Gravity pulls downwards in proportion to mass (the
proportionality constant is called 𝑔)

• (𝑃𝑇 ) Tension pulls tangentially to the rope

• (𝑃𝑁𝐿) Newton’s First Law: a body at rest will remain at rest
unless it is acted upon by a force

To model the rope, imagine it is made of small rigid rods. We will
focus on one such rod, 𝑆, (drawn in the figure) from 𝑑 to 𝑑 + Δ.

70.1 Given (𝑃𝑁𝐿), find a relation between the force vectors ⃗𝑇𝐿, ⃗𝑇𝑅,
⃗𝐹𝑔.

70.2 Approximate the length of the segment 𝐒 and its mass. Approx-
imate the vector ⃗𝐹𝑔.

70.3 Find a vector ⃗𝑉𝐿 in the direction of ⃗𝑇𝐿 (the magnitude doesn’t
matter at this point).
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Exercise 71
Consider a rope hanging from two poles.

𝑑 𝑑 + Δ

⃗𝐹𝑔

⃗𝑇𝑅
⃗𝑇𝐿

The only forces acting on the rope are gravity and tension.

Similarly to the previous exercise, we can find a vector ⃗𝑉𝑅 =
[1 𝐻′(𝑑+Δ)] in the direction of ⃗𝑇𝑅, but with possibly different
magnitude.

So far we have:
• ⃗𝑇𝐿 = 𝛼 ⃗𝑉𝐿 for some 𝛼 > 0, and

• ⃗𝑇𝑅 = 𝛽 ⃗𝑉𝑅 for some 𝛽 > 0.

71.1 Can you find approximations of the vectors ⃗𝐹𝑔, ⃗𝑇𝐿, ⃗𝑇𝑅 that
only use 𝐻(𝑑), 𝐻′(𝑑), and 𝐻″(𝑑)?

Hint:
• 𝐻(𝑑 + Δ) ≈ 𝐻(𝑑) + Δ ⋅ 𝐻′(𝑑),
• 𝐻′(𝑑 + Δ) ≈ 𝐻′(𝑑) + Δ ⋅ 𝐻″(𝑑).

71.2 Put everything together to find a (second order) differential
equation for 𝐻.

71.3 Do 𝛼 or 𝛽 depend on 𝑑? Explain.
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Exercise 72
Recall a rope hanging from two poles.

𝐻(𝑑) = the height of the rope at position 𝑑.

We have the following model for it:

𝐻″(𝑑) = 𝑘√1 + (𝐻′(𝑑))2

Toronto Hydro is stringing some wire. The posts are 20m apart and at
a height of 10m. At the lowest point, the wire is 5m above the ground.

72.1 Set up a boundary value problem that can be used to find the total
length of the wire.

72.2 Using the following Desmos link, can you find a solution to the
boundary value problem?

https://www.desmos.com/calculator/l4fair6454

72.3 It happens that 𝑘 = 𝜌𝑔
𝑇  where 𝑇  is the minimum tension in the

rope.

Suppose Toronto Hydro hung the wires so that they were at
minimum 9m above the ground. Would the tension be higher or
lower? By how much?

72.4 Should the difference between maximum and minimum tension
be higher or lower for low-hanging wires? What does your intu-
ition say? What does the phase portrait say?
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Exercise 73
Consider a pendulum as in the figure below.

𝑚

𝜃

⃗𝐹𝑔

⃗𝑇

𝜃(𝑡) = the angle the pendulum
makes with the vertical axis
(positive in the counterclock-
wise direction and negative in

the clockwise direction).

Assume the pendulum is composed of a weightless rigid rod of length
1m and a mass of 1kg at its end. In addition assume:

• (𝑃𝐺) Gravity pulls downwards in proportion to mass (the pro-
portionality constant is called 𝑔).

• (𝑃𝑇 ) Tension pulls the mass in the direction of the rod.

• (𝑃𝑁𝐿) Newton’s Second Law: Force is proportional to acceler-
ation (the proportionality constant is called mass).

• (𝑃𝑀𝐿) Laws of Motion: Velocity is the time derivative of dis-
placement and acceleration is the time derivative of velocity.

73.1 Let 𝜃(𝑡) be the angle at time 𝑡 and let ⃗𝑟(𝑡) be the mass’s position
at time 𝑡.

Find ⃗𝑟(𝑡) and ⃗𝑟″(𝑡) in terms of 𝜃(𝑡).
73.2 Find the vector ⃗𝐹𝑔.

73.3 Find a vector ⃗𝑇𝑑 so that ⃗𝑇 = 𝛼 ⃗𝑇𝑑 for some 𝛼 > 0.

73.4 Find a second-order differential equation for the pendulum.
Hint: (𝑃𝑁𝐿) gives you an equation for each coordinate. Solve one
for (𝜃′)2 and substitute it into the other equation.
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Exercise 74
Consider a pendulum as in the figure below.

𝑚

𝜃

⃗𝐹𝑔

⃗𝑇

𝜃(𝑡) = the angle the pendulum
makes with the vertical axis
(positive in the counterclock-
wise direction and negative in

the clockwise direction).

If we had preserved length and mass in our derivation, we would
have the following model:

𝜃″(𝑡) = −( 𝑔
𝐿

) sin(𝜃(𝑡))

Let (P) be the corresponding system of first-order differential equa-
tions. The following Desmos link is already set up with (P).

https://www.desmos.com/calculator/acmiingcqf

74.1 If 𝐿 = 3m, and you set the pendulum in motion at 𝜃 = 0 by
giving it a small push, what does the motion look like?

74.2 If 𝐿 = 3m, and you set the pendulum in motion at 𝜃 = 0 by
giving it a big push, what does the motion look like?

74.3 Why are there infinitely many equilibrium solutions? Based on
your physical intuition, which equilibria are stable and which
are unstable?

74.4 Find an affine approximation to (P) around (𝜃, 𝜃′) = (0, 0).
74.5 Physicists often claim that 𝜃(𝑡) oscillates like a sine wave with

period 2𝜋√𝐿
𝑔 . Under what conditions are the (mostly) correct?
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