
Differential Equations
MAT244 Workbook
2025/06/26 Edition

Jason Siefken
Bernardo Galvão-Sousa





Table of Contents (Modules)

1  Modelling 5
Modelling 5

Types of Models 6

Solving Differential Equations 7

General Solutions 8

Writing General Solutions 8

Initial Value Problems 8

Solving Methods 9

Practice Problems 9

Solutions for Module 1 9

2  Simulation 19
Visual Estimation 19

Euler’s Method 20

Implementing Euler’s Method 23

Accuracy of Euler’s Method 24

Practice Problems 26

Solutions for Module 2 26

3  Systems and Models with Interacting Terms 31
Modelling 31

Simulation 31

Component and Phase Spaces 32

Practice Problems 34

Solutions for Module 3 34

4  Equilibrium and Long-Term Behaviour 41
Equilibrium Points 43

Types of Equilibrium Solutions 44

Stable and Attracting 45

Stable and not Attracting 45

Unstable and Repelling 46

Unstable and not Repelling 46

Other Classifications 46

Practice Problems 46

Solutions for Module 4 47

5  Qualitative Analysis: Slope Fields and Phase Portraits 53



Analyzing Slope Fields 53

Systems of Differential Equations and Phase Portraits 54

Phase Portraits and Missing Time 56

Phase Portraits for Single Equations 57

Practice Problems 57

Solutions for Module 5 57

6  Linear Systems with Constant Coefficients (Real Solutions) 67
Linear Algebra Pre-requisites 67

Finding Explicit Solutions 67

Matrix Form 67

Eigenvectors and Guessing Solutions 68

The Subspace of Solutions 68

Linear Algebra of the Solution Space 70

Dimension of the solution space 71

Finding a basis of solutions 72

Solutions of systems with real eigenvalues 73

Eigen solutions in phase space 74

Stability of the Equilibrium Solutions 74

Practice Problems 76

Solutions for Module 6 76

7  Linear Systems with Constant Coefficients (Affine Solutions) 93
Centering about the Equilibrium 93

Solving Affine Equations 95

Figuring out what to shift by 95

Practice Problems 96

Solutions for Module 7 96

8  Linear Systems with Constant Coefficients (Complex Solutions) 101
Complex Numbers Pre-requisites 101

Finding Explicit Solutions 101

Finding Real Solutions 101

Other Methods to Find Real Solutions 103

Stability of the Equilibrium Solutions 104

Summary 105

Practice Problems 106

Solutions for Module 8 106

9  Quantitative Analysis: Linearization 113
Linearization 113



Using Calculus to Linearize 115

Linearized Solutions vs. True Solutions 116

Classifying Equilibria using Linearization 118

Identical Linearization for Different Systems 118

Practice Problems 120

Solutions for Module 9 120

10  Higher Order Differential Equations 127
Order of a differential equation 127

Transforming a higher order differential equation into a first order system of differential equations
127

Equilibrium solutions for higher order differential equations 127

Stability of equilibrium solutions of a higher order differential equation 128

Linearization of higher order differential equations 128

Numerical methods for higher order differential equations 129

Practice Problems 129

Solutions for Module 10 129

11  Introduction to Boundary Value Problems 133
What is a boundary value problem? 133

Solving a boundary value problem 133

Existence and Uniqueness of solution 133

Simulating solutions using the shooting method 133

Practice Problems 135

Solutions for Module 11 135

12  Introduction to the Theory of Ordinary Differential Equations 139
Practice Problems 141

Solutions for Module 12 142

Appendix A  Spreadsheets and Programming 145
Spreadsheet Basics 145

Formulas 145

Preventing Interpolation 145

Pitfalls of Formulas 146

Graphing 146

Practice Problems 146

Solutions for Appendix A 146

Appendix B  Separable Equations 147
Separable equations 147



Implicit solutions 148

Examples of separable equations 149

Practice Problems 151

Solutions for Appendix B 152

Appendix C  Integrating Factors 153
Practice Problems 156

Solutions for Appendix C 158

Appendix D  Series Solutions 159
Practice Problems 159

Solutions for Appendix D 159

Appendix E  Reduction of Order 161
Practice Problems 161

Solutions for Appendix E 162

Appendix F  Linear Algebra 163
Practice Problems 163

Solutions for Appendix F 163

Appendix G  Complex Numbers 165
Preliminaries 165

Geometry of the Complex Numbers 165

Euler’s Formula and Polar Form for Complex Numbers 167

Applying Complex Numbers 168

Practice Problems 168

Solutions for Appendix G 168



M
od

ul
e 

1

Modelling
In this module you will learn
•What a differential equation is.
•What a solution to a differential equation is.
•The difference between a discrete model and a differential-equation based model.

Modelling
Suppose you are observing some green ants walking on the sidewalk. In the first minute you
record 10 ants. In the second, you record 20. In the third, 40. This continues until there are
too many ants for you to count.

Minute #Green Ants

1 10
2 20
3 40
4 80
⋮ ⋮

Since you lost count of the ants, you decide to use mathematics to predict how many ants
walked by on minutes 5, 6, …. You notice the pattern that

Green ants per minute 𝑛 = 2𝑛−1 · 10.

Stupendous! Mathematics now predicts there were 160 ants during minute 5. But something
else catches your eye. Across the sidewalk are brown ants. You count these ants every minute.

Minute #Brown Ants

1 3
2 6
3 12
4 24
⋮ ⋮

The pattern is slightly different. This time,

Brown ants per minute 𝑛 = 2𝑛−1 · 3.

Your friend, who was watching you the whole time, looks confused. They question: “Why come
up with two complicated equations when you can describe both types of ant at once?”

#Ants at minute 𝑛 = 2 · (#Ants at minute 𝑛 − 1)
#Green ants at minute 1 = 10
#Brown ants at minute 1 = 3

Your friend has a point. Their model is elegant, but your model can predict how many ants
pass by at minute 3.222! (Though, your friend would probably complain that 46.654 is not a
number of ants….) You and your friend have just come up with two different mathematical
models for the number of ants that walk across the sidewalk. They happen to make similar
predictions for each minute and each have their strengths and weaknesses. In this text, we
will be focused on third type of mathematical model—one that uses differential equations at
its core.
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Types of Models

Mathematical Model. A mathematical model is a description of the world that is
1. created in the service of answering a question, and
2. where the complexity of the world has been abstracted away to numbers, quantities,

and their relationships.¹

In the previous situation, the question you were trying to answer was “how many ants are there
at a given minute?”. We sidestepped difficult issues like, “Is an ant that is missing three legs
still an ant?” by using the common-sense conventions and so we could use single numbers to
represent our quantity of interest (the ants).

You and your friend already came up with two types of models.
•An explicit model based on known functions.
•A recursive model where subsequent terms are based on previous terms and initial condi-

tions.

If we define 𝐴(𝑛) to be the number of ants crossing the sidewalk at minute 𝑛, the explicit model
presented for green ants is 𝐴(𝑛) = 2𝑛−1 ⋅ 10 and the recursive model presented is 𝐴(𝑛) = 2 ⋅
𝐴(𝑛 − 1) with 𝐴(1) = 10.

Each model has pros and cons. For example, the explicit model allows you to calculate the
number of ants at any minute with few button presses on a calculator, whereas the recursive
model is more difficult to calculate but makes it clear that the number of ants is doubling
every minute.

Often times recursive models are easier to write down than explicit models², but they may be
harder to analyze. A third type of model has similarities to both explicit and recursive models
but adds more by bringing the power of calculus to modeling.
•A differential-equations model is a model based on a relationship between a function’s

derivative(s), its values, and an initial condition.

Differential-equations models are useful because derivatives correspond to rates of change, and
things in the world are always changing. Let’s try to come up with a differential equations
model for brown ants.

We’d like an equation relating 𝐴(𝑛), the number of brown ants at minute 𝑛, to 𝐴′(𝑛), the
instantaneous rate of change of the number of ants at minute 𝑛. Making a table, we see

Minute #Brown Ants Change (from prev. minute)

1 3 ?
2 6 3
3 12 6
4 24 12

or

¹Other mathematical objects are also allowed.
²In fact, in many real-world situations, an explicit model in terms of already known functions doesn’t exist.
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Minute #Brown Ants Change (from next minute)

1 3 3
2 6 6
3 12 12
4 24 ?

depending on whether we record the change from the previous minute or up to the subsequent
minute. Neither table gives the instantaneous rate of change, but in both tables, the change is
proportional to the number of ants. So, we can set up a model

𝐴′(𝑛) = 𝑘𝐴(𝑛)

where 𝑘 is a constant of proportionality that we will try to determine later. We’ve just written
down a differential equation with an undetermined parameter 𝑘.

Differential Equation. A differential equation is an equation relating a function to one or
more of its derivatives.

We’d like to figure out what 𝑘 is. One way is to solve the differential equation (that is, find an
explicit function which satisfies the differential equation) and find which values of 𝑘 make our
model correctly predict the data. This is called fitting the model to data.

Note that in general, fitting a model to data doesn’t necessarily produce unique values for the
unknown parameters, and a fitted model (especially when the data comes from real-world
observations) usually doesn’t reproduce the data exactly. However, in the case of these ants,
we just might get lucky.

Solving Differential Equations
Our approach to fitting will be to first solve the differential equation, i.e. find what functions
𝐴 satisfy the equation 𝐴′(𝑡) = 𝑘𝐴(𝑡), and then see which values of 𝑘 produce solutions that
fit the data. Our primary method for finding explicit solutions to differential equations will be
guess-and-check.

Example.  Use guess-and-check to solve 𝐴′(𝑛) = 𝑘𝐴(𝑛).

Since 𝐴′ ≈ 𝐴, we might start with a function that is equal to its own derivative. There is
a famous one: 𝑒𝑛. Testing, we see d

d𝑛𝑒𝑛 = 𝑒𝑛 = 𝑘𝑒𝑛 if 𝑘 = 1, but it doesn’t work for other
𝑘’s. Trying 𝑒𝑘𝑛 instead yields d

d𝑛𝑒𝑘𝑛 = 𝑘𝑒𝑘𝑛 which holds for all 𝑘. Thus 𝐴(𝑛) = 𝑒𝑘𝑛 is a solu-
tion to 𝐴′(𝑛) = 𝑘𝐴(𝑛). However, there are other solutions. Because d

d𝑛𝐶𝑒𝑘𝑛 = 𝐶(𝑘𝑒𝑘𝑛) =
𝑘(𝐶𝑒𝑘𝑛) for every number 𝐶, the function 𝐴(𝑛) = 𝐶𝑒𝑘𝑛 is a solution to 𝐴′(𝑛) = 𝑘𝐴(𝑛).

By guessing-and-checking, we have found an infinite number of solutions to 𝐴′(𝑛) = 𝑘𝐴(𝑛).

It’s now time to fit our model to the data.

Example.  Find values of 𝐶 and 𝑘 so that 𝐴(𝑛) = 𝐶𝑒𝑘𝑛 best models brown ants.

Taking two rows from our brown ants table, we see

𝐴(1) = 𝐶𝑒𝑘 = 3

𝐴(2) = 𝐶𝑒2𝑘 = 6

7



M
od

ul
e 

1 
—

 M
od

el
lin

g
Since 𝑒𝑘 can never be zero, from the first equation we get 𝐶 = 3

𝑒𝑘 . Combining with the
second equation we find

𝐶𝑒2𝑘 = 3
𝑒𝑘 𝑒2𝑘 = 3𝑒𝑘 = 6

and so 𝑒𝑘 = 2. In other words 𝑘 = ln 2. Plugging this back in, we find 𝐶 = 3
2 . Thus our fitted

model is

𝐴(𝑛) = 3
2𝑒𝑛 ln 2.

Upon inspection, we can see that 3
2𝑒𝑛 ln 2 = 3 ⋅ 2𝑛−1, which is the explicit model that was first

guessed for brown ants.

General Solutions

Solution. A solution to a differential equation on a domain 𝐷 is a function with domain
𝐷 which satisfies the differential equation on 𝐷. (The domain 𝐷 is usually take to be a
connected set like an interval.)

A given differential equation can have many solutions.

The solution set, complete solution, or general solution is the family of all functions that satisfy
the differential equation on a given domain.

For example, we can easily verify that the functions 𝑦(𝑡) = 𝑒2𝑡 and 𝑦(𝑡) = 17𝑒2𝑡 both satisfy
the differential equation 𝑦′ = 2𝑦. Any multiple of one of these solutions is also a solution, so
the set

{𝑓 : 𝑓(𝑡) = 𝐶𝑒2𝑡 for some 𝐶 ∈ ℝ}

is a set of solutions to the differential equation 𝑦′ = 2𝑦. Because there are no other solutions,
{𝑓 : 𝑓(𝑡) = 𝐶𝑒2𝑡 for some 𝐶 ∈ ℝ} is, in fact, the solution set/complete solution to the differen-
tial equation.

Writing General Solutions
Because set notation can be cumbersome, we often write solutions in an abbreviated form. For
example, we might write the general solution to 𝑦′ = 2𝑦 as

𝑦(𝑡) = 𝐶𝑒2𝑡 where 𝐶 ∈ ℝ is a parameter.

Important note: We always specify which terms/variables in a general solution are parameters
(e.g., by writing “where … is a parameter”). This is because differential equations coming from
models often involve many variables. It’s important to distinguish which variables come from
modelling assumptions and which are free parameters of your solution.

For example, when finding the general solution to 𝑦′ = 𝑘𝑦, if we wrote “𝑦(𝑡) = 𝐶𝑒𝑘𝑡”, it
wouldn’t be clear if every choice of 𝐶 gives a valid solution, if every choice of 𝑘 gives a valid
solution, or both. Here, 𝑘 comes from the equation/model and we are not allowed to choose
it when solving. However, 𝐶 can be chosen by us and every choice results in a valid solution.

Initial Value Problems
Out of the infinitely many solutions to a differential equation, we usually only want a few of
them. One way to winnow down the solution set is to specify an initial condition: a value that
the solution to the differential equation attains at some point/time.

8
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For example, suppose 𝑃 ′ = 2𝑃  models a population and we know the population starts at 100
at time 𝑡 = 0 (i.e., 𝑃(0) = 100). The general solution to 𝑃 ′ = 2𝑃  is 𝑃(𝑡) = 𝐶𝑒2𝑡 where 𝐶 is a
parameter, but only one solution in this family satisfies 𝑃(0) = 100. (Stop now and figure out
what value of 𝐶 leads to a solution satisfying 𝑃(0) = 100.)

Solving Methods
There are a number of algorithms and techniques to find explicit solutions to particular classes
of differential equations. These include:
•Separation of variables, a technique applicable to differential equations of the form 𝑥′(𝑡) =

𝐹(𝑥(𝑡)) ⋅ 𝐺(𝑡). (See Appendix B)
•Integrating factors, a technique applicable to differential equations of the form 𝑥′(𝑡) + 𝑓(𝑡) ⋅

𝑥(𝑡) = 𝑔(𝑡). (See Appendix C)
•Series solutions, a technique to express the solution to a differential equation as a power

series (e.g., 𝑓(𝑡) = ∑∞
𝑛=0 𝑎𝑛𝑡𝑛). (See Appendix D)

Unfortunately, despite these techniques, there is no algorithm for explicitly solving a
general differential equation. But, it is easy to check whether a particular function is a
solution to a differential equation, since there is an algorithm to differentiate functions.³ This
means guess and check is an effective method for finding explicit solutions to differential
equations, and, though we will learn some other solving techniques, guess and check will be
our go-to method.

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Module 1
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.

³More specifically, there is an algorithm to differentiate the elementary functions, those functions formed by
compositions, sums, products, and quotients of polynomials, trig, exponentials, and logs.

9



1 You are observing starfish that made their way to a previously uninhabited tide-pool. You’d like to
predict the year-on-year population of these starfish. You start with a simple assumption

#new children per year ∼ size of current population

1.1 Come up with a mathematical model for the number of star fish in a given year. Your model
should

• Define any notation (variables and parameters) you use

• Include at least one formula/equation

• Explain how your formula/equation relates to the starting assumption



2 Let

(Birth Rate) 𝐾 = 1.1 children per starfish per year
(Initial Pop.) 𝑃0 = 10 star fish

and define the model 𝐌1 to be the model for starfish population with these parameters.

2.1 Simulate the total number of starfish per year using Excel.



3 Recall the model 𝐌1 (from the previous question).

Define the model 𝐌∗
1 to be

𝑃(𝑡) = 𝑃0𝑒0.742𝑡

3.1 Are 𝐌1 and 𝐌∗
1 different models or the same?

3.2 Which of 𝐌1 or 𝐌∗
1 is better?

3.3 List an advantage and a disadvantage for each of 𝐌1 and 𝐌∗
1.



4 In the model 𝐌1, we assumed the starfish had 𝐾 children at one point during the year.
4.1 Create a model 𝐌𝑛 where the starfish are assumed to have 𝐾/𝑛 children 𝑛 times per year (at

regular intervals).

4.2 Simulate the models 𝐌1, 𝐌2, 𝐌3 in Excel. Which grows fastest?

4.3 What happens to 𝐌𝑛 as 𝑛 → ∞?



5 Exploring 𝐌𝑛
We can rewrite the assumptions of 𝐌𝑛 as follows:

• At time 𝑡 there are 𝑃𝑛(𝑡) starfish.

• 𝑃𝑛(0) = 10
• During the time interval (𝑡, 𝑡 + 1

𝑛) there will be (on average) 𝐾
𝑛  new children per starfish.

5.1 Write an expression for 𝑃𝑛(𝑡 + 1
𝑛) in terms of 𝑃𝑛(𝑡).

5.2 Write an expression for Δ𝑃𝑛, the change in population from time 𝑡 to 𝑡 + Δ𝑡.
5.3 Write an expression for Δ𝑃𝑛

Δ𝑡 .

5.4 Write down a differential equation relating 𝑃 ′(𝑡) to 𝑃(𝑡) where 𝑃(𝑡) = lim
𝑛→∞

𝑃𝑛(𝑡).



6
Recall the model 𝐌1 defined by:

• 𝑃1(0) = 10
• 𝑃1(𝑡 + 1) = 𝐾𝑃(𝑡) for 𝑡 ≥ 0 years and 𝐾 = 1.1.

Define the model 𝐌∞ by:
• 𝑃(0) = 10
• 𝑃 ′(𝑡) = 𝑘𝑃(𝑡).

6.1 If 𝑘 = 𝐾 = 1.1, does the model 𝐌∞ produce the same population estimates as 𝐌1?



7 Suppose that the estimates produced by 𝐌1 agree with the actual (measured) population of
starfish.

Fill out the table indicating which models have which properties.

Model Accuracy Explanatory (your favourite property)

𝐌1

𝐌∗
1

𝐌∞



8
Recall the model 𝐌1 defined by:

• 𝑃1(0) = 10
• 𝑃1(𝑡 + 1) = 𝐾𝑃(𝑡) for 𝑡 ≥ 0 years and 𝐾 = 1.1.

Define the model 𝐌∞ by:
• 𝑃(0) = 10
• 𝑃 ′(𝑡) = 𝑘𝑃(𝑡).

8.1 Suppose that 𝐌1 accurately predicts the population. Can you find a value of 𝑘 so that 𝐌∞
accurately predicts the population?



9 After more observations, scientists notice a seasonal effect on starfish. They propose a new model
called 𝐒:

• 𝑃(0) = 10
• 𝑃 ′(𝑡) = 𝑘 ⋅ 𝑃 (𝑡) ⋅ | sin(2𝜋𝑡)|

9.1 What can you tell about the population (without trying to compute it)?

9.2 Assuming 𝑘 = 1.1, estimate the population after 10 years.

9.3 Assuming 𝑘 = 1.1, estimate the population after 10.3 years.
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Simulation
In this module you will learn
•How to use slope fields and Euler’s method to approximate solutions to differential equa-

tions.

Most differential equations do not have explicit elementary solutions. That is, solutions which
can be written in terms of polynomials, exponentials, logarithms, etc.. Put another way: most
differential equations do not have “nice” solutions. However, most ordinary differential equa-
tions that you will encounter will have solutions (even though you cannot write them down).

There are two approaches when a differential equation cannot be explicitly “solved”:
1. Make up a new name for a function defined to be the solution.
2. Approximate the solution.

Before the days of computers, approach 1 was commonplace. If you’ve heard of Bessel functions
or Airy functions, these are functions defined to be the solutions to particular differential
equations.4

In this course, we will focus on approach 2.

Visual Estimation
Suppose that 𝑃(𝑡) models the number of bacteria (in billions) in a petri dish at time 𝑡. (Since
the bacteria are so numerous, it makes sense to think of 𝑃(𝑡) as continuous.) Further, suppose
that 𝑃  satisfies

𝑃 ′(𝑡) = sin( 𝜋
2

⋅ 𝑃 (𝑡) − 𝑡 ) − 1.5 and 𝑃(0) = 3.

Our task is to approximate 𝑃(1).

We may not know exactly what our solution curve is, but the differential equation tells us
what tangent lines to the solution curve look like. It stands to reason that if we draw little
segments of tangent lines all over the (𝑡, 𝑃 )–plane, we can visually guess at the shape of the
solution curve.

0.0 1.0
𝑡

1

2

3

𝑃

The above diagram, where small segments of tangent lines to solutions populate the plane, is
called a slope field.

Slope Field. A slope field for the differential equation 𝑦′ = 𝑓(𝑥, 𝑦) is a collection of line
segments that are tangent to different solutions of the differential equation.

The line segments are generated by evaluating 𝑓(𝑥, 𝑦) over a rectangular grid of points, and
at each point (𝑥, 𝑦) of the grid creating a line segment of slope 𝑓(𝑥, 𝑦). The length of the
line segments is not important, but should be consistent.

Starting at (𝑡, 𝑃 (𝑡)) = (0, 3), we can trace out what an approximate solution curve looks like.

4Even the humble exponential is often defined to be the solution to 𝑓 ′(𝑡) = 𝑓(𝑡) which satisfies 𝑓(0) = 1.

19
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0.0 1.0
𝑡

1

2

3

𝑃

The solution curve we draw should be tangent to every line segment it passes through. In the
drawing above, the solution curve is decreasing and slightly concave up. Based on the drawing,
we can estimate 𝑃(1) ≈ 1.7.

Tracing out solutions on slope fields is a good way to see overall qualities of a solution, like
whether it is increasing/decreasing or its concavity. But, its numerical accuracy is limited. A
small change in how we sketched the curve could lead to estimates that 𝑃(1) ≈ 1.5 or 𝑃(1) ≈
1.9, a wide range. If we’re after precise numerical estimates, we can formalize this “slope field
estimation” by means of Euler’s method.

Euler’s Method
Recall that 𝑃(𝑡) models the number of bacteria (in billions) in a petri dish at time 𝑡 with

𝑃 ′(𝑡) = sin( 𝜋
2

⋅ 𝑃 (𝑡) − 𝑡 ) − 1.5 and 𝑃(0) = 3.

Our task is to numerically approximate 𝑃(1).

A simple approach would be to approximate 𝑃(1) using a tangent line through the point
(0, 𝑃 (0)). We know the slope 𝑃 ′(0) = −2.5, and so we get an approximation of

𝑃(1) ≈ 𝑃(0) + 𝑃 ′(0)(𝑡 − 0)|
𝑡=1

= 0.5.

0.0 1.0
𝑡

𝑃

Our approximation is an underestimate. How can we be more accurate? By using two tangent
lines!

A tangent line is a good approximation to a function near the point of tangency. So, instead
of approximating 𝑃(1) using a tangent line at 𝑡 = 0, let’s approximate 𝑃(0.5) using a tangent
line at 𝑡 = 0 and then approximate 𝑃(1) using a tangent line at 𝑡 = 0.5.

Unfortunately, we won’t know the exact value of 𝑃(0.5), so we cannot use the true tangent
line to the solution curve at 𝑡 = 0.5. But, we know an approximate value of 𝑃(0.5). For now,
we will assume this approximate value is close enough.

20
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𝑃approx(0.5) = 𝑃(0) + 𝑃 ′(0) ⋅ (𝑡 − 0)|
𝑡=1

2

= 1.75⏟
Estimate from tangent line

at (0,𝑃(0))

𝑃approx(1) = 𝑃approx(0.5) + 𝑃 ′
approx(0.5) ⋅ (𝑡 − 0.5)|

𝑡=1

= 1.75 + (−0.72) ⋅ (𝑡 − 0.5)|
𝑡=1

= 1.39⏟
Estimate from tangent line

at (0.5,𝑃approx(0.5))

0.0 1.0
𝑡

𝑃

This process becomes more accurate the more (approximate) tangent lines we use. Here is a
picture showing what happens if we use four tangent lines.

0.0 1.0
𝑡

𝑃

The process of using many tangent lines to iteratively approximate a solution to a differential
equation is called Euler’s method, and the resulting approximation is called an Euler approxi-
mation.

Euler's Method. Let 𝑦′(𝑡) = 𝑓(𝑡, 𝑦) be a differential and let 𝑦 be a solution satisfying 𝑦(𝑡0) =
𝑦1. The Euler approximation to 𝑦 with step size Δ is the sequence of points (𝑡0, 𝑦0), (𝑡1, 𝑦2),
…, where

𝑦1 = 𝑦0 + Δ ⋅ 𝑓(𝑡0, 𝑦0) 𝑡1 = 𝑡0 + Δ
𝑦2 = 𝑦1 + Δ ⋅ 𝑓(𝑡1, 𝑦1) 𝑡2 = 𝑡1 + Δ

⋮ ⋮
𝑦𝑛 = 𝑦𝑛−1 + Δ ⋅ 𝑓(𝑡𝑛−1, 𝑦𝑛−1) 𝑡𝑛 = 𝑡𝑛−1 + Δ

When applying Euler’s method, the big decision is how many tangent lines to use. This is often
expressed in terms of a step size, typically denoted by Δ, where Δ = domain of approximation

# of tangent lines used .

Example. Use Euler’s method to approximate 𝑃(1) for the differential equation

𝑃 ′(𝑡) = sin( 𝜋
2

⋅ 𝑃 (𝑡) − 𝑡 ) − 1.5

with initial condition 𝑃(0) = 3, using a step size of Δ = .25.

We will implement Euler’s method by making a table to help us track the relevant quantities.
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Step 𝑡 𝑃approx(𝑡) 𝑃 ′
approx(𝑡)

⋮ ⋮ ⋮ ⋮

We can start by filling out the “Step” and 𝑡 columns. We start at 𝑡 = 0 and at Step 0. Since
we have a step size of Δ = .25, we will increment 𝑡 by Δ at each step until we reach 𝑡 = 1.

Step 𝑡 𝑃approx(𝑡) 𝑃 ′
approx(𝑡)

0 0
1 0.25
2 0.5
3 0.75
4 1

At time 𝑡 = 0, we know the exact value of 𝑃(𝑡) and of 𝑃 ′(𝑡), so we can fill in the first row
of the table.

Step 𝑡 𝑃approx(𝑡) 𝑃 ′
approx(𝑡)

0 0 3 −2.5
1 0.25
2 0.5
3 0.75
4 1

To find 𝑃approx(0.25), we use a tangent line centered at (𝑡, 𝑃 ) = (0, 3). Thus,

𝑃approx(0.25) = 𝑃(0) + 𝑃 ′
approx(0) ⋅ (𝑡 − 0)|

𝑡=0.25
= 3 + (−2.5) ⋅ (0.25 − 0) = 2.375.

We can now fill in the second row of the table, noting that we get 𝑃 ′
approx(0.25) from the

formula 𝑃 ′(𝑡) = sin( 𝜋2 ⋅ 𝑃 (𝑡) − 𝑡 ) − 1.5.

Step 𝑡 𝑃approx(𝑡) 𝑃 ′
approx(𝑡)

0 0 3 −2.5
1 0.25 2.375 −1.833
2 0.5
3 0.75
4 1

We can now compute 𝑃approx(0.5) using a tangent line centered at (𝑡, 𝑃 ) = (0.25, 2.375).

𝑃approx(0.5) = 𝑃approx(0.25) + 𝑃 ′
approx(0.25) ⋅ (𝑡 − 0.25)|

𝑡=0.5

= 2.375 + (−1.833) ⋅ (0.5 − 0.25) = 1.917.

and so

Step 𝑡 𝑃approx(𝑡) 𝑃 ′
approx(𝑡)

0 0 3 −2.5
1 0.25 2.375 −1.833
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Step 𝑡 𝑃approx(𝑡) 𝑃 ′
approx(𝑡)

2 0.5 1.917 −0.91
3 0.75
4 1

Continuing this process, we can fill in the rest of the table.

Step 𝑡 𝑃approx(𝑡) 𝑃 ′
approx(𝑡)

0 0 3 −2.5
1 0.25 2.375 −1.833
2 0.5 1.917 −0.91
3 0.75 1.689 −0.555
4 1 1.551

This gives an Euler estimate of

𝑃(1) ≈ 𝑃approx(1) = 1.551.

(Note, there is no need to compute 𝑃 ′
approx(1) since we are not using it, but there is no harm

in computing it either.)

Implementing Euler’s Method
As seen in the previous example, Euler’s method can be efficiently implemented using a table.
This processes is worth doing a few times by hand, but, in truth, it’s what computers are
made for.

Though you can easily implement Euler’s method using general purpose programming lan-
guages like Python, Matlab, etc., there is one type of software that excels5 at implementing
table-based algorithms: spreadsheets.

Appendix A gives an overview of how to use spreadsheets. In this section we assume a basic
familiarity.

To use a spreadsheet to implement Euler’s method, we will recreate the table from the previous
example. We start by
•labelling our columns
•inputting our initial conditions, and
•setting up a formula that increments 𝑡 by Δ at each step.

For this example, we will use Δ = 0.25 and our familiar initial value problem 𝑃 ′(𝑡) = sin( 𝜋2 ⋅
𝑃 (𝑡) − 𝑡 ) − 1.5 with 𝑃(0) = 3.

t P(t) P'(t)

0
=A2+0.25

3
1
2
3
4
5
6

A B C

D
ra

g 
do

w
n →

t P(t) P'(t)

0
0.25
0.5

0.75
1

3
1
2
3
4
5
6

A B C

5Pun intended.
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Next, we enter the formula for 𝑃 ′(𝑡), making reference to the appropriate cells to get the values
of 𝑡 and 𝑃(𝑡). Here, the formula we enter into C2 is =SIN(PI() / 2 * B2 - A2) - 1.5.6

t P(t) P'(t)

0
0.25
0.5

0.75
1

3 =SIN(PI() / 2 * B2 - A2) - 1.5

1
2
3
4
5
6

A B C

D
ra

g 
do

w
n

→

t P(t) P'(t)

0
0.25
0.5

0.75
1

3 −2.5
−1.7474

−1.97943
−2.18164
−2.34147

1
2
3
4
5
6

A B C

Note: our spreadsheet currently has incorrect values for 𝑃 ′ since the formula for 𝑃 ′(𝑡) in the
spreadsheet is referencing cells that have not yet been populated with values.7

Finally, we can enter the formula for 𝑃(𝑡). Based on the tangent line approximation, we enter
in the cell B3 the formula =B2+0.25*C2 (make sure you know where this formula comes from
before continuing).

t P(t) P'(t)

0
0.25
0.5

0.75
1

3 −2.5
−1.7474

−1.97943
−2.18164
−2.34147

=B2+0.25*C2

1
2
3
4
5
6

A B C

→

t P(t) P'(t)

0
0.25
0.5

0.75
1

3 −2.5
2.375 −1.83259

1.91685 −0.91036
1.68926 −0.55483
1.55055 −0.50912

1
2
3
4
5
6

A B C

Our spreadsheet has now taken care of all the tedious calculations! It is also reactive. For
example, if we change the initial conditions (i.e., change the value of 𝑃(0) in cell B2), the
spreadsheet will automatically recompute the value in all other cells.

Accuracy of Euler’s Method
When using Euler’s method, in general, smaller step sizes produce more accurate the approx-
imation. And, when taking a limit towards an infinitely small step size, the approximation
converges to an exact solution.

For example, consider the initial value problem 𝑦′(𝑡) = sin(5𝑡) with 𝑦(0) = 0.8. We can solve
this exactly to get 𝑦(𝑡) = 1 − 0.2 cos(5𝑡). Comparing the exact solution to Euler approximations
with different step sizes, we see that the smaller the step size, the more accurate the approxi-
mation.

6To get the value 𝜋 we must enter PI() with the parenthesis () at the end.
7Spreadsheets typically interpret empty cells as the number 0. They do this instead of producing an error

message when you use an empty cell in a formula.
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Exact Solution vs.
Euler Approx (Δ = 0.3)

Exact Solution vs.
Euler Approx (Δ = 0.2)

Exact Solution vs.
Euler Approx (Δ = 0.1)

In the above example, we knew the exact solution, but what if we didn’t? It is possible to get
explicit bounds on the error of an Euler approximation through Taylor’s Remainder Theorem
and a careful analysis of Euler’s method8, but we will take a more experimental approach.

Consider the initial value problem

𝑦′ = sin(5𝑥 + 𝑦)
.2 + 𝑦2 and 𝑦(0) = 0.8.

We don’t have an explicit solution to this initial value problem, but we can plot Euler approxi-
mations with different step sizes and compare them. Plotting with Δ = 0.3, 0.2, 0.1, 0.05, 0.03,
and 0.01 we see different Δ’s result in very different curves. What does the exact solution
look like?

1 2 3

−1

1

2

Euler Approximations with Δ = 0.3 to 0.01

Initially, it may not seem like the approximations are converging to an exact solution. However,
if we keep plotting with smaller and smaller Δ’s, we see that the approximations start to settle
down to a consistent shape.

1 2 3

−1

1

2

Euler Approximations with Δ = 0.01 to 0.0005

8See https://math.libretexts.org/Courses/Monroe_Community_College/MTH_225_Differential_
Equations/03%3A_Numerical_Methods/3.01%3A_Euler%27s_Method for a detailed exposition.
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When approximations start looking consistent, this provides strong evidence that the approx-
imations are close to the exact solution. Of course, this evidence is not as strong as a
mathematical proof, but it is usually sufficient for doing science (where there are likely other
sources of error far greater than the error arising from Euler’s method).

Example. Use Euler’s method to estimate whether the solution to the initial value problem
… is periodic or not

XXX Finish. Come up with a nice example where it’s not super obvious.

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Module 2
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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10 Consider the following argument for the population model 𝐒 where 𝑃 ′(𝑡) = 𝑃(𝑡) ⋅ |sin(2𝜋𝑡)| with
𝑃(0) = 10:

At 𝑡 = 0, the change in population ≈ 𝑃 ′(0) = 0, so

𝑃(1) ≈ 𝑃(0) + 𝑃 ′(0) ⋅ 1 = 𝑃(0) = 10.

At 𝑡 = 1, the change in population ≈ 𝑃 ′(1) = 0, so

𝑃(2) ≈ 𝑃(1) + 𝑃 ′(1) ⋅ 1 = 𝑃(0) = 10.

And so on.

So, the population of starfish remains constant.

10.1 Do you believe this argument? Can it be improved?

10.2 Simulate an improved version using a spreadsheet.



11 (Simulating 𝐌∞ from Core Exercise 6 with different Δs)

Time Pop. (Δ = 0.1) Time Pop. (Δ = 0.2)

0.0 10 0.0 10

0.1 11.1 0.2 12.2

0.2 12.321 0.4 14.884

0.3 13.67631 0.6 18.15848

0.4 15.1807041 0.8 22.1533456

11.1 Compare Δ = 0.1 and Δ = 0.2. Which approximation grows faster?

11.2 Graph the population estimates for Δ = 0.1 and Δ = 0.2 on the same plot. What does the
graph show?

11.3 What Δs give the largest estimate for the population at time 𝑡?
11.4 Is there a limit as Δ → 0?



12 Consider the following models for starfish growth:

𝐌 # new children per year ∼ current population.
𝐍 # new children per year ∼ current population times resources available per individual.
𝐎 # new children per year ∼ current population times the fraction of total resources

remaining.

12.1 Guess what the population vs. time curves look like for each model.

12.2 Create a differential equation for each model.

12.3 Simulate population vs. time curves for each model (but pick a common initial population).



13 Recall the models

𝐌 # new children per year ∼ current population.
𝐍 # new children per year ∼ current population times resources available per individual.
𝐎 # new children per year ∼ current population times the fraction of total resources

remaining.

13.1 Determine which population grows fastest in the short term and which grows fastest in the
long term.

13.2 Are some models more sensitive to your choice of Δ when simulating?

13.3 Are your simulations for each model consistently underestimates? Overestimates?

13.4 Compare your simulated results with your guesses from question What did you guess
correctly? Where were you off the mark?
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Systems and Models with Interacting Terms
In this module you will learn
•How to build models using systems of differential equations.
•How to approximate solutions to systems of differential equations.
•How to graph solutions to systems of differential equations in component space and phase

space.

Modelling
In the previous two modules, we modeled a single quantity. But, what happens when we have
multiple interrelated quantities?

To explore this, we will model populations of Yellow Meadow Ants. The Yellow Meadow Ant
is a species of farming ant. They tend to farms of aphids, which are small insects that suck
the sap from plants. The ants protect the aphids from predators and in return the aphids
secrete a sugary substance called honeydew, which the ants eat. The population of ants and the
population of aphids are symbiotically interrelated, as the growth of one population depends
on the other.

We can create a system of differential equations to model the interrelated populations:

d
d𝑡

(# ants at minute 𝑡) = 𝑎(# ants at minute 𝑡) + 𝑏(# aphids at time 𝑡)

d
d𝑡

(# aphids at minute 𝑡) = 𝑐(# ants at minute 𝑡) − 𝑑(# aphids at time 𝑡)

The first equation models the growth of the ant population, with 𝑎 representing the natural
growth of ants in the absence of aphids and 𝑏 representing the growth of the ant population
due to the presence of aphids (this term provides a “boost” to the ant population since the
presence of aphids will mean more food for the ants).

The second equation models the growth of the aphid population, with 𝑐 representing the
growth of the aphid population due to the presence of ants (this term has a positive effect
on the growth of aphids since they will be protected from predators), and 𝑑 representing the
natural death of aphids in the absence of ants (they will be eaten by other creatures if ants
aren’t around to protect them).

The parameters 𝑎, 𝑏, 𝑐, 𝑑 ≥ 0 depend on the habitat. They could be from data, but we will
instead use artificially nice values of 𝑎, 𝑏, 𝑐, 𝑑.

Simulation
We will use a modified version of Euler’s method (see Module 2) to simulate a solution to
a system of differential equations. The change will be that we will use two tangent lines to
estimate the next data point—one tangent line for ants and one for aphids.

For now, we will assume 𝑎 = 1, 𝑏 = 𝑐 = 𝑑 = 1
2  and that units are in thousands (or ands and

aphids). The initial population will be 10 thousand ants and 100 thousand aphids. Using a time
step of Δ = 0.25, we compute

(# Ants)′(0) = 1 ⋅ 10 + 1
2

⋅ 100 = 60

(# Aphids)′(0) = 1
2

⋅ 10 − 1
2

⋅ 100 = −45

and so
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(# Ants)(0.25) ≈ 10 + 0.25 ⋅ 60 = 25
(# Aphids)(0.25) ≈ 100 + 0.25 ⋅ (−45) = 88.75

We can now repeat this processes at 𝑡 = 0.25 to find approximate values for the number of
ants and aphids at 𝑡 = 0.5, etc.. Repeating until 𝑡 = 1.75, we arrive at the following table of
values:

Time (approximate) # Ants (approximate) # Aphids

0 10 100

0.25 25 88.75

0.5 42.344 80.781

0.75 63.027 75.977

1 88.281 74.358

1.25 119.646 76.098

1.5 159.07 81.542

1.75 209.03 91.233

In the graph below, our simulated solution is shown with the solid curve representing the
population of ants and the dashed curve representing the population of aphids.
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Of course, if we wanted a more accurate simulation, we could use a smaller step size. Below
is a graph using a step size of Δ = 0.05, The new, more accurate estimates are shown (solid
and dashed) along with the old estimates (dotted).
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Component and Phase Spaces
The graphs above is called component graphs. They show the dependent variables (the popula-
tions of ants and aphids) vs. the independent variable (time).9

9It is actually two component graphs, one for the ants and one for the aphids.
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However, we often want to consider the relationship between the dependent variables. In this
example, we might plot the population of ants vs. the population of aphids.

0 50 100 150 200
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(thousands)
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80
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100
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ph
id

s
(t

ho
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an
ds

)

This plot suggests a relationship: there is a threshold where if the # ants is above that threshold,
they enable growth in # aphids. More analysis is needed to see if this observation is valid, but
the graph points us in the right direction.10

Plots like the one above are called phase plots or plots in phase space. The space where each
axis corresponds to a dependent variable is called phase space or the phase plane.

Component Graph & Phase Plane. For a differential equation involving the functions
𝐹1, 𝐹2, …, 𝐹𝑛, and the variable 𝑡, the component graphs are the 𝑛 graphs of (𝑡, 𝐹1(𝑡)),
(𝑡, 𝐹2(𝑡)), ….

The phase plane or phase space associated with the differential equation is the 𝑛-dimen-
sional space with axes corresponding to the values of 𝐹1, 𝐹2, …, 𝐹𝑛.

XXX We need a nice conclusion

Example. The Three-dimensional Lorenz Equations

Phase space is not limited to two dimensions. Consider the Lorentz equations, introduced by
Edward Lorenz to demonstrate the inherent challenge in weather prediction.¹¹ The Lorenz
equations are

d𝑥
d𝑡

= 𝜎(𝑦 − 𝑥)

d𝑦
d𝑡

= 𝑥(𝜌 − 𝑧) − 𝑦

d𝑧
d𝑡

= 𝑥𝑦 − 𝛽𝑧

where 𝜎 = 10, 𝜌 = 28, and 𝛽 = 8
3 .

Since there are three dependent variables (𝑥, 𝑦, and 𝑧), the phase space associated with the
Lorenz equations is three dimensional.

Simulating using Euler’s method, we get the following phase-space plot.

10See if you can find what the threshold # ants is by analyzing the differential equation directly.
¹¹The Lorenz equations would go on to become a foundational example in the study of chaos theory—a

deterministic but hard to predict dependence on initial conditions.
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From the plot in phase space, we can see the spiralling nature of solutions. Something that
is much harder to see from the component graphs.
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Lorenz Equations (Component Space)

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Module 3
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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14 A simple model for population growth has the form

𝑃 ′(𝑡) = 𝑏 ⋅ 𝑃 (𝑡)

where 𝑏 is the birth rate.

14.1 Create a better model for population that includes both births and deaths.



15 Lotka-Volterra Predator-Prey models predict two populations, 𝐹  (foxes) and 𝑅 (rabbits), simulta-
neously. They take the form

𝐹 ′(𝑡) = (𝐵𝐹 − 𝐷𝐹 ) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (𝐵𝑅 − 𝐷𝑅) ⋅ 𝑅(𝑡)

where 𝐵{?} stands for births and 𝐷{?} stands for deaths.

We will assume:

(Pfoxes 1) Foxes die at a constant rate.
(Pfoxes 2) Foxes mate when food is plentiful.
(Prabbits) Rabbits mate at a constant rate.

(Ppredation) Foxes eat rabbits.

15.1 Speculate on when 𝐵𝐹 , 𝐷𝐹 , 𝐵𝑅, and 𝐷𝑅 would be at their maximum(s)/minimum(s), given
our assumptions.

15.2 Come up with appropriate formulas for 𝐵𝐹 , 𝐵𝑅, 𝐷𝐹 , and 𝐷𝑅.



16 Suppose the population of 𝐹  (foxes) and 𝑅 (rabbits) evolves over time following the rule

𝐹 ′(𝑡) = (0.01 ⋅ 𝑅(𝑡) − 1.1) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (1.1 − 0.1 ⋅ 𝐹(𝑡)) ⋅ 𝑅(𝑡)

16.1 Simulate the population of foxes and rabbits with a spreadsheet.

16.2 Do the populations continue to grow/shrink forever? Are they cyclic?

16.3 Should the humps/valleys in the rabbit and fox populations be in phase? Out of phase?



17 Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

𝐹 ′(𝑡) = (0.01 ⋅ 𝑅(𝑡) − 1.1) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (1.1 − 0.1 ⋅ 𝐹(𝑡)) ⋅ 𝑅(𝑡)

17.1 Is the maximum population of the rabbits over/under estimated? Sometimes over, sometimes
under?

17.2 What about the foxes?

17.3 What about the min populations?

https://uoft.me/foxes-and-rabbits


18 Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

𝐹 ′(𝑡) = (0.01 ⋅ 𝑅(𝑡) − 1.1) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (1.1 − 0.1 ⋅ 𝐹(𝑡)) ⋅ 𝑅(𝑡)

Component Graph & Phase Plane. For a differential equation involving the functions 𝐹1, 𝐹2,
…, 𝐹𝑛, and the variable 𝑡, the component graphs are the 𝑛 graphs of (𝑡, 𝐹1(𝑡)), (𝑡, 𝐹2(𝑡)), ….

The phase plane or phase space associated with the differential equation is the 𝑛-dimensional
space with axes corresponding to the values of 𝐹1, 𝐹2, …, 𝐹𝑛.

18.1 Plot the Fox vs. Rabbit population in the phase plane.

18.2 Should your plot show a closed curve or a spiral?

18.3 What “direction” do points move along the curve as time increases? Justify by referring to
the model.

18.4 What is easier to see from plots in the phase plane than from component graphs (the graphs
of fox and rabbit population vs. time)?

https://uoft.me/foxes-and-rabbits
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Equilibrium and Long-Term Behaviour
In this module you will learn
•What equilibrium solutions and equilibrium points are.
•How to equilibrium points related to the long term behavior of a differential equation/

system of differential equations.

Models built from differential equations will tell you how quantities change. Equally important,
though, are the conditions under which a quantity does not change. In science and engineering,
when a when a system is in a state that doesn’t change, we say it is at equilibrium. In the
context of differential equations, solutions that don’t change are called equilibrium solutions.

Equilibrium Solution. An equilibrium solution to a differential equation or system of
differential equations is a solution that is constant in the independent variable(s).

Suppose you are modelling a leaf falling from a balcony onto the ground. Let ℎ(𝑡) represent
the height of the leaf above the ground at time 𝑡. If we assume that air resistance causes the
leaf to fall at a constant speed of 1 𝑚/𝑠, we can set up a differential equation to model the
leaf’s motion.

ℎ′ = {−1  if ℎ > 0
0  if ℎ ≤ 0

Looking at a slope field for this equation, we can see that most solutions look “L”-shaped, first
decreasing to zero and then remaining constant.

0 1 2 3
𝑡

1.0

2.0

3.0

ℎ

But, there is one solution that is qualitatively different: ℎ(𝑡) = 0. Indeed, the function ℎ(𝑡) = 0
satisfies ℎ′(𝑡) = 0, and so is a solution to the differential equation. It is the equilibrium solution
to the differential equation corresponding to the leaf resting on the ground (not actually falling
at all).

Let’s consider a more complicated example.

Two ponds, Pond 𝐴 and Pond 𝐵, each with a volume of 1 million litres, are connected by
canals. Pond 𝐴 is fed by a stream with contaminated with pesticides from a nearby farm. Pond
𝐵 is fed by a mountain stream of clean water. The ponds exchange water through their canals
at a rate of 0.1 million litres per day. Additionally, the ponds have spill-gates that allow any
excess water to flow out of each pond so they maintain a constant volume.

We will assume:
•The ponds are well-mixed.
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•Contaminated water flows into Pond 𝐴 at a rate of 0.05 million litres per day with 1 kilogram

of pesticide per million litres.
•Clean water flows into Pond 𝐵 at a rate of 0.02 million litres per day.

Pond A Pond B

⟷

Canals
0.1𝑚 𝑙

𝑑

⟷

↓

Contaminated Inflow
0.05𝑚 𝑙

𝑑

↓

Clean Inflow
0.02𝑚 𝑙

𝑑

↓

Outflow
0.05𝑚 𝑙

𝑑

↓

Outflow
0.02𝑚 𝑙

𝑑

Let 𝐴(𝑡) be the amount of pesticide in Pond 𝐴 at time 𝑡, and let 𝐵(𝑡) be the amount of pesticide
in Pond 𝐵 at time 𝑡.

We can model 𝐴 and 𝐵 with the following system of differential equations.¹²

𝐴′ = −0.15 ⋅ 𝐴 + 0.1 ⋅ 𝐵 + 0.05
𝐵′ = 0.1 ⋅ 𝐴 − 0.12 ⋅ 𝐵

With our model defined, we can now make plots showing the amount of pesticide vs. time
given different initial conditions.

Pond A
Pond B

0 50 100
𝑡 (days)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
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e 
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g)

𝐴(0) = 0.6
𝐵(0) = 0.1

0 50 100
𝑡 (days)

𝐴(0) = 1.4
𝐵(0) = 0.5

0 50 100
𝑡 (days)

𝐴(0) = 0.1
𝐵(0) = 1.4

Using our physical intuition, we would expect that the amount of pesticide in each pond tends
towards a constant (i.e., an equilibrium), and that’s exactly what we see in the plots. No matter

¹²To come up with this model, notice that 𝐴′, the change in the amount of pesticide in Pond 𝐴, is equal to
the inflow of pesticide minus the outflow of pesticide. Pond 𝐴 has an inflow of 0.05 kg / day from farm runoff
and an inflow of 0.1 ⋅ 𝐵(𝑡) kg / day from Pond 𝐵. It has an outflow of 0.1 ⋅ 𝐴(𝑡) kg / day to Pond 𝐵 and an
outflow of 0.05 ⋅ 𝐴(𝑡) kg / day to the environment. Thus 𝐴′ = 0.05 + 0.1 ⋅ 𝐵 − 0.1 ⋅ 𝐴 − 0.05 ⋅ 𝐴 = −0.15 ⋅ 𝐴 +
0.1 ⋅ 𝐵 + 0.05. A similar argument will produce an equation for 𝐵′.
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the initial conditions, the eventual amount of pesticide in Pond 𝐴 is slightly less than 0.8 kg
and the eventual amount of pesticide in Pond 𝐵 is slightly more than 0.6 kg.

We can compute the equilibrium solution to this differential equation exactly. Since we know
that an equilibrium solution is constant, we know that the derivative of an equilibrium solution
is always zero. Solving

0 = 𝐴′ = −0.15 ⋅ 𝐴 + 0.1 ⋅ 𝐵 + 0.05
0 = 𝐵′ = 0.1 ⋅ 𝐴 − 0.12 ⋅ 𝐵

we arrive at the unique solution (𝐴, 𝐵) = (0.75, 0.625). In other words,

𝐴(𝑡) = 0.75
𝐵(𝑡) = 0.625

is the only equilibrium solution to this system.

Example. Differential equations may have more than one equilibrium solution. Find all
equilibrium solutions to

𝑃 ′ = 𝑃 ⋅ 𝑄 − 4𝑃 + 3
𝑄′ = 2𝑃 − 𝑄 ⋅ (𝑃 + 1)

To find the equilibrium solutions, we set 𝑃 ′ = 0 and 𝑄′ = 0 and solve the resulting system
of equations.

0 = 𝑃 ⋅ 𝑄 − 4𝑃 + 3
0 = 2𝑃 − 𝑄 ⋅ (𝑃 + 1)

implies either (𝑃 , 𝑄) = (1, 1) or (𝑃 , 𝑄) = (−3
2 , 6).

Therefore, the equilibrium solutions are

𝑃(𝑡) = 1
𝑄(𝑡) = 1

and
𝑃(𝑡) = −3

2
𝑄(𝑡) = 6

Equilibrium Points
We can also examine equilibrium solutions in phase space. Using our pond example, we can
make a plot in phase space.

Pond A
Pond B

0 50 100
𝑡 (days)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
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Component Space

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
A

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

B

Phase Space

As we noticed, all solutions tend towards the equilibrium solutions 𝐴(𝑡) = 0.75 and 𝐵(𝑡) =
0.625. In phase space, this manifests as all solutions tending towards the point (𝐴, 𝐵) =
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(0.75, 0.625). Further, if we graph the equilibrium solution 𝐴(𝑡) = 0.75 and 𝐵(𝑡) = 0.625 in
phase space, instead of a curve, we get a single point (𝐴, 𝐵) = (0.75, 0.625). We call this point
an equilibrium point.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
A

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Phase Space

Equilibrium Point →

Types of Equilibrium Solutions
In the mixing ponds example, all solutions tended towards the equilibrium solution (the
equilibrium solution is attracting). This isn’t always the case.

In fact, consider the following population model based on the assumption of exponential
growth and a carrying capacity¹³:

𝑃 ′(𝑡) = 𝑃(𝑡) ⋅ (100 − 𝑃(𝑡))

It has two equilibrium solutions: 𝑃(𝑡) = 0 and 𝑃(𝑡) = 100 (shown in solid colors). All other
solutions are non-constant (dashed lines).

𝑡
0

50

100

P

Population vs. Time

We call the equilibrium solution 𝑃(𝑡) = 0 unstable and repelling. That is, while it is true that a
population of exactly zero will stay that way, if there is even one individual (in this model at
least), the population will grow substantially. Alternatively, we call the equilibrium solution
𝑃(𝑡) = 100 stable and attracting. If the population is exactly 100, it will stay that way, but if
the population is slightly less than or slightly more than 100, it will tend towards 100.

In general, equilibrium solutions can be classified as attracting, repelling, stable, and/or
unstable depending on the behaviour of solutions near that equilibrium (i.e., solutions with
initial conditions near the equilibrium point).

¹³100 represents the carrying capacity of the environment. If the population exceeds the carrying capacity,
individuals start dying.

44



M
od

ul
e 

4 
—

 E
qu

ilib
riu

m
 a

nd
 L

on
g-

Te
rm

 B
eh

av
io

ur

Classification of Equilibria. An equilibrium solution 𝑓  is called
•attracting if locally, solutions converge to 𝑓;
•repelling if there is a fixed distance so that locally, solutions tend away from 𝑓  by that

fixed distance;
•stable if for any fixed distance, locally, solutions stay within that fixed distance of 𝑓; and,
•unstable if 𝑓  is not stable.

The above definition uses the term local to refer to solutions that passes through points “close
to” that of the equilibrium solution. This can be made precise using 𝜀-𝛿 definitions.

Classification of Equilibria (Formal). An equilibrium solution 𝑓  is called
•attracting at time 𝑡0 if there exists 𝜀 > 0 such that for all solutions 𝑔 satisfying |𝑔(𝑡0) −

𝑓(𝑡0)| < 𝜀, we have lim𝑡→∞ 𝑓(𝑡) = lim𝑡→∞ 𝑔(𝑡).
•repelling at time 𝑡0 if there exists 𝜀 > 0 and 𝛿 > 0 such that for all solutions 𝑔 that satisfy

0 < |𝑔(𝑡0) − 𝑓(𝑡0)| < 𝜀 there exists 𝑇 ∈ ℝ so that for all 𝑡 > 𝑇  we have |𝑔(𝑡) − 𝑓(𝑡)| > 𝛿.
•stable at time 𝑡0 if for all 𝜀 > 0 there exists a 𝛿 > 0 such that for all solutions 𝑔 satisfying

|𝑔(𝑡0) − 𝑓(𝑡0)| < 𝛿 we have |𝑔(𝑡) − 𝑓(𝑡)| < 𝜀 for all 𝑡 > 𝑡0.
•unstable at time 𝑡0 if 𝑓  is not stable at time 𝑡0.

𝑓  is called attracting/repelling/stable/unstable if it has the corresponding property for all
𝑡.

Whether using the formal or informal definition, the important thing is to have an intuition
about what different types of equilibrium solutions look like, both in component space and
phase space.

Stable and Attracting
We’ve already seen that for 𝑃 ′ = 𝑃 ⋅ (100 − 𝑃), the equilibrium solution 𝑃(𝑡) = 100 is stable
and attracting.

𝑡
0

50

100

P

Population vs. Time

•It is stable because if a solution 𝑃 ∗ (dashed curves above) starts close to 𝑃(𝑡) = 100, then it
will stay close to 𝑃(𝑡) = 100.

•The equilibrium solution 𝑃(𝑡) = 100 is attracting because if a solution 𝑃 ∗ (dashed curves
above) starts close to 𝑃(𝑡) = 100, its limit as 𝑡 → +∞ will actually be 100.

Stable and not Attracting
Consider the differential equation 𝑦′ = 0. This equation has solutions of the form 𝑦(𝑡) = 𝑘,
where 𝑘 is a constant. These are all equilibrium solutions!

Let’s focus on the equilibrium solution 𝑦(𝑡) = 0.
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−1.0

−0.5

0.0

0.5

1.0

𝑦

Population vs. Time

•This solution is stable because if a solution 𝑦∗(𝑡) = 𝑘 (dashed curve above) starts close to
𝑦(𝑡) = 0, it will stay close to 𝑦(𝑡) = 0; in fact

its distance from 𝑦(𝑡) will never change.
•However, 𝑦(𝑡) = 0 is not attracting, because 𝑦∗(𝑡) = 𝑘 ↛ 0.

Unstable and Repelling
XXX Finish

Unstable and not Repelling
XXX Finish

Other Classifications
There cannot be unstable and attracting equilibria, nor can there be stable and repelling
equilibria. But there can be other behaviours.

Consider the Van der Pol system:

𝑥′ = 𝑦
𝑦′ = 𝜇 ⋅ (1 − 𝑥2) ⋅ 𝑦 − 𝑥

for 𝜇 > 0.

Solutions to this system all end up with oscillatory behaviour and they all have the same period.
Here solutions are not attracted to an equilibrium, but they are attracted towards a solution
which is perfectly periodic (in this situation we say that the system has a limit cycle). The study
of what behaviour solutions can be “attracted to” leads to concepts like fractals and chaos, and
may be studied in an advanced differential equations course or a course on dynamical systems.

XXX Figure

Example. Find an classify all equilibrium solutions to XXX Finish

XXX Finish

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.
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Solutions for Module 4
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.

47



19 Open the spreadsheet

https://uoft.me/foxes-and-rabbits

which contains an Euler approximation for the Foxes and Rabbits population.

𝐹 ′(𝑡) = (0.01 ⋅ 𝑅(𝑡) − 1.1) ⋅ 𝐹 (𝑡)
𝑅′(𝑡) = (1.1 − 0.1 ⋅ 𝐹(𝑡)) ⋅ 𝑅(𝑡)

Equilibrium Solution. An equilibrium solution to a differential equation or system of differ-
ential equations is a solution that is constant in the independent variable(s).

19.1 By changing initial conditions, what is the “smallest” curve you can get in the phase plane?
What happens at those initial conditions?

19.2 What should 𝐹 ′ and 𝑅′ be if 𝐹  and 𝑅 are equilibrium solutions?

19.3 How many equilibrium solutions are there for the fox-and-rabbit system? Justify your answer.

19.4 What do the equilibrium solutions look like in the phase plane? What about their component
graphs?

https://uoft.me/foxes-and-rabbits


20 Recall the logistic model for starfish growth (introduced in Core Exercise 12):

𝐎 # new children per year ∼ current population times the fraction of total resources remaining

which can be modeled with the equation

𝑃 ′(𝑡) = 𝑘 ⋅ 𝑃 (𝑡) ⋅ (1 − 𝑅𝑖
𝑅

⋅ 𝑃(𝑡))

where
• 𝑃(𝑡) is the population at time 𝑡
• 𝑘 is a constant of proportionality

• 𝑅 is the total number of resources

• 𝑅𝑖 is the resources that one starfish wants to consume

Use 𝑘 = 1.1, 𝑅 = 1, and 𝑅𝑖 = 0.1 unless instructed otherwise.

20.1 What are the equilibrium solutions for model 𝐎?

20.2 What does a “phase plane” for model 𝐎 look like? What do graphs of equilibrium solutions
look like?

20.3 Classify the behaviour of solutions that lie between the equilibrium solutions. E.g., are they
increasing, decreasing, oscillating?



21
Classification of Equilibria. An equilibrium solution 𝑓  is called

• attracting if locally, solutions converge to 𝑓;

• repelling if there is a fixed distance so that locally, solutions tend away from 𝑓  by that
fixed distance;

• stable if for any fixed distance, locally, solutions stay within that fixed distance of 𝑓; and,

• unstable if 𝑓  is not stable.

Let

𝐹 ′(𝑡) = ?

be an unknown differential equation with equilibrium solution 𝑓(𝑡) = 1.

21.1 Draw an example of what solutions might look like if 𝑓  is attracting.

21.2 Draw an example of what solutions might look like if 𝑓  is repelling.

21.3 Draw an example of what solutions might look like if 𝑓  is stable.

21.4 Could 𝑓  be stable but not attracting?



22 Recall the starfish population model 𝐎 given by

𝑃 ′(𝑡) = 𝑘 ⋅ 𝑃 (𝑡) ⋅ (1 − 𝑅𝑖
𝑅

⋅ 𝑃(𝑡))

Use 𝑘 = 1.1, 𝑅 = 1, and 𝑅𝑖 = 0.1 unless instructed otherwise.

22.1 Classify the equilibrium solutions for model 𝐎 as attracting, repelling, stable, unstable, or
semi-stable.

22.2 Does changing 𝑘 change the nature of the equilibrium solutions? How can you tell?



23

0 5 10 15 20
−5

0

5
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A slope field is a plot of small segments of tangent lines to solutions of a differential equation at
different initial conditions.

On the left is a slope field for model 𝐎, available at

https://www.desmos.com/calculator/ghavqzqqjn

23.1 If you were sketching the slope field for model 𝐎 by hand, what line would you sketch (a
segment of) at (5, 3)? Write an equation for that line.

23.2 How can you recognize equilibrium solutions in a slope field?

23.3 Give qualitative descriptions of different solutions to the differential equation used in model
𝐎 (i.e., use words to describe them). Do all of those solutions make sense in terms of model
𝐎?

https://www.desmos.com/calculator/ghavqzqqjn
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Qualitative Analysis: Slope Fields and Phase Portraits
In this module you will learn
•How slope fields can be used to analyze a differential equation.
•How phase portraits can be used to analyze a system of differential equations.

Sometimes we are interested in the precise behaviour of a solution to a differential equation,
but more often than not, we’re interested in the qualities of solutions. For example, we
may want to know if an equilibrium solution is stable, or if a solution is periodic/initially
increasing/unbounded/etc.. Much of this information can be deduced without actually solving
or simulating solutions to the differential equation.

Analyzing Slope Fields
In Module 2 we saw slope fields.

Slope Field. A slope field for the differential equation 𝑦′ = 𝑓(𝑥, 𝑦) is a collection of line
segments that are tangent to different solutions of the differential equation.

The line segments are generated by evaluating 𝑓(𝑥, 𝑦) over a rectangular grid of points, and
at each point (𝑥, 𝑦) of the grid creating a line segment of slope 𝑓(𝑥, 𝑦). The length of the
line segments is not important, but should be consistent.

By looking at a slope field, we can visualize what whole ranges of solutions look like.

Consider the differential equation

𝑦′ = 𝑦(1 − 𝑦) + 𝑥

and its slope field below.

−2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

From the slope field, we can see there are two qualitatively different types of solutions: those
that decrease forever, and those that eventually increase. We can roughly divide the slope field
into regions where initial conditions in one region lead to decreasing solutions, and initial
conditions in the other region lead to eventually increasing solutions.

−2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Decreasing

Eventually Increasing
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We can also see that increasing solutions tend towards a particular increasing solution.

−2 0 2 4 6
−3
−2
−1

0
1
2
3
4

Increasing solutions
tend towards the

dashed line

Systems of Differential Equations and Phase Portraits
Consider a modified version of the Ants-and-Aphids model from Module 3, where ants are
removed by a farmer at a constant rate (10 thousand per day).

𝑃 ′
ant = 𝑃ant + 0.5 ⋅ 𝑃aphid  − 10

𝑃 ′
aphid = 0.5 ⋅ 𝑃ant − 0.5 ⋅ 𝑃aphid

How can we make a slope field for this system? If we make slope fields in component space,
we miss out on important information. For example, to compute 𝑃 ′

ant we need a value of 𝑃aphid,
but because the number of ants and the number of aphids affect each other, we cannot just
choose a value for 𝑃aphid. The same issue arises for 𝑃 ′

aphid. The conclusion is that a “slope field”
for this system must have a 𝑃ant axis, a 𝑃aphid axis, and a time axis. I.e., it is three-dimensional.

0 5 10 15 20

0
5

10
15

200

5

10

15

20

𝑥
𝑦

𝑧

XXX make correct 3d slope field Figure

It’s hard to glean information from a three-dimensional slope field. What if, instead, we tried
to encode information into the two-dimensional phase space?

Suppose we want to simulate a solution with initial conditions (𝑃ant, 𝑃aphid) = (3, 21) at time
0. We would first compute (𝑃 ′

ant, 𝑃 ′
aphid) = (3.5, −8.1) and our estimate for (𝑃ant, 𝑃aphid) at time

Δ would be

(𝑃ant, 𝑃aphid) + Δ ⋅ (𝑃 ′
ant, 𝑃 ′

aphid) = (3, 21) + Δ ⋅ (3.5, −8.1).

In other words, we start at (3, 21) and move slightly in the direction of (3.5, −8.1) (i.e., in the
direction of (𝑃 ′

ant, 𝑃 ′
aphid)).
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(𝑃 ′
ant, 𝑃 ′

aphid)
Solution
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𝑃ant
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𝑃 a
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𝑃ant vs 𝑃aphid
𝑃ant(0) = 3

𝑃aphid(0) = 21

What if, we drew the vector (𝑃 ′
ant, 𝑃 ′

aphid) at many points in phase space? Doing so, we would
produce a phase portrait.

Phase Portrait. A phase portrait or phase diagram is the plot of a vector field in phase
space where each vector rooted at (𝑥, 𝑦) is tangent to a solution curve passing through (𝑥, 𝑦)
and its length is given by the speed of a solution passing through (𝑥, 𝑦).

0 10 20
𝑃ant

0

5

10

15

20

25

𝑃 a
ph

id

Phase Portrait for
Ants–Aphids Model

Analyzing the phase portrait, like the slope field, we can see solutions with different qualities.
For example, we can divide phase space into sets of initial conditions where the ants population
goes to zero and where the ants population is unbounded.
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Phase Portrait for
Ants–Aphids Model

𝑃ant → 0

𝑃ant → ∞

We could further subdivide phase space into regions where solutions (in phase space) are
concave up or concave down, where ants/aphids achieve a maximum population, etc.. How
we analyze a phase portrait depends on what questions we are trying to answer.

Phase Portraits and Missing Time
One important piece of information that is missing from phase portraits is a sense of time.
While component space includes the independent variable, phase space does not. We partially
make up for this by adjusting the length of an arrow in a phase portrait to correspond to the
speed that a solution passes through the arrow at that point.

Constant Speed Solutions
Solutions Slow Down then

Speed Up

In the phase portraits above, solutions (in phase space) move in a straight line up and to the
right. However, in the rightmost phase portrait, we can see that solutions slow down (almost to
a stop) and then speed up again. When graphed in component space, the difference is visible.
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𝑡

Constant Speed Solutions
Component Space

𝑡

Solutions Slow Down then
Speed Up

Component Space

XXX Add example that asks, say, to draw a phase portrait for periodic solutions that are sines
vs. that aren’t.

An important note is that phase portraits are useful for autonomous equations, equations where
the independent variable does not appear. Non-autonomous must be analyzed a different way.

Phase Portraits for Single Equations
XXX Finish - write about 1d phase portraits

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Module 5
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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24

https://www.desmos.com/3d/kvyztvmp0g

Three dimensional slope fields are possible, but hard to interpret. This is a slope field for the Foxes–
Rabbits model.

24.1 What are the three dimensions in the plot?

24.2 What should the graph of an equilibrium solution look like?

24.3 What should the graph of a typical solution look like?

24.4 What are ways to simplify the picture so we can more easily analyze solutions?

https://www.desmos.com/3d/kvyztvmp0g
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Phase Portrait. A phase portrait or phase diagram is the plot of a vector field in phase space
where each vector rooted at (𝑥, 𝑦) is tangent to a solution curve passing through (𝑥, 𝑦) and its
length is given by the speed of a solution passing through (𝑥, 𝑦).

This is a phase portrait for the Foxes–Rabbits model (introduced in Core Exercise 15).

https://www.desmos.com/calculator/vrk0q4espx

25.1 What do the 𝑥 and 𝑦 axes correspond to?

25.2 Identify the equilibria in the phase portrait. What are the lengths of the vectors at those points?

25.3 Classify each equilibrium as stable/unstable.

25.4 Copy and paste data from your simulation spreadsheet into the Desmos plot. Does the
resulting curve fit with the picture?

https://www.desmos.com/calculator/vrk0q4espx


26 Sketch your own vector field where the corresponding system of differential equations:

26.1 Has an attracting equilibrium solution.

26.2 Has a repelling equilibrium solution.

26.3 Has no equilibrium solutions.



27
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Recall the slope field for model 𝐎.

27.1 What would a phase portrait for model 𝐎 look like? Draw it.

27.2 Where are the arrows the longest? Shortest?

27.3 How could you tell from a 1d phase portrait whether an equilibrium solution is attracting/
repelling/etc.?



28 The following differential equation models the life cycle of a tree. In the model

• 𝐻(𝑡) = height (in meters) of tree trunk at time 𝑡
• 𝐴(𝑡) = surface area (in square meters) of all leaves at time 𝑡

𝐻′(𝑡) = 0.3 · 𝐴(𝑡) − 𝑏 · 𝐻(𝑡)

𝐴′(𝑡) = −0.3 · (𝐻(𝑡))2 + 𝐴(𝑡)

and 0 ≤ 𝑏 ≤ 2.

28.1 Modify

https://www.desmos.com/calculator/vrk0q4espx

to make a phase portrait for the tree model.

28.2 What do equilibrium solutions mean in terms of tree growth?

28.3 For 𝑏 = 1 what are the equilibrium solution(s)?

https://www.desmos.com/calculator/vrk0q4espx


29 29.1 Fix a value of 𝑏 and use a spreadsheet to simulate some solutions with different initial
conditions. Plot the results on your phase portrait from 28.1.

29.2 What will happen to a tree with (𝐻(0), 𝐴(0)) = (20, 10)? Does this depend on 𝑏?

29.3 What will happen to a tree with (𝐻(0), 𝐴(0)) = (10, 10)? Does this depend on 𝑏?



30 The tree model

𝐻′(𝑡) = 0.3 · 𝐴(𝑡) − 𝑏 · 𝐻(𝑡)

𝐴′(𝑡) = −0.3 · (𝐻(𝑡))2 + 𝐴(𝑡)

was based on the premises

(Pheight 1) CO2 is absorbed by the leaves and turned directly into trunk height.
(Pheight 2) The tree is in a swamp and constantly sinks at a speed proportional to its height.

(Pleaves) Leaves grow proportionality to the energy available.
(Penergy 1) The tree gains energy from the sun proportionally to the leaf area.
(Penergy 2) The tree loses energy proportionally to the square of its height.

30.1 How are the premises expressed in the differential equations?

30.2 What does the parameter 𝑏 represent (in the real world)?

30.3 Applying Euler’s method to this system shows solutions that pass from the 1st to 4th quadrants
of the phase plane. Is this realistic? Describe the life cycle of such a tree?



31 Recall the tree model

𝐻′(𝑡) = 0.3 · 𝐴(𝑡) − 𝑏 · 𝐻(𝑡)

𝐴′(𝑡) = −0.3 · (𝐻(𝑡))2 + 𝐴(𝑡)

31.1 Find all equilibrium solutions for 0 ≤ 𝑏 ≤ 2.

31.2 For which 𝑏 does a tree have the possibility of living forever? If the wind occasionally blew
off a few random leaves, would that change your answer?

31.3 Find a value 𝑏5 of 𝑏 so that there is an equilibrium with 𝐻 = 5.

Find a value 𝑏12 of 𝑏 so that there is an equilibrium with 𝐻 = 12.

31.4 Predict what happens to a tree near equilibrium in condition 𝑏5 and a tree near equilibrium
in condition 𝑏12.
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Linear Systems with Constant Coefficients (Real Solutions)
In this module you will learn:
•How to find explicit solutions to systems of differential equations with constant coefficients

by using the eigenvalues and eigenvectors of the coefficient matrix.
•How the real, distinct eigenvalues of a system of differential equations with constant coeffi-

cients are related to the stability of the equilibrium solutions.

Linear Algebra Pre-requisites
Starting with this module, we will be using several results from linear algebra. We will assume
that you are familiar with the following:
•Vector spaces and subspaces.
•Linear transformations and their null space/kernel and range/image.
•Linear independence of vectors.
•Span, basis, and dimension of a vector space/subspace.
•Eigenvalues and eigenvectors of a matrix and how to compute them.

You will find a review of these topics in Appendix F.

Finding Explicit Solutions
For equations like 𝑦′ = 7𝑦, we were lucky enough to guess-and-check our way to solutions
𝑦(𝑡) = 𝐴𝑒7𝑡 where 𝐴 ∈ ℝ is a parameter. It turns out, by using some insights from linear
algebra, we will be able to guess-and-check our way to solutions to some systems of differential
equations as well.

Matrix Form
Consider the system

𝑥′ = 2𝑥 + 𝑦
𝑦′ = 𝑥 + 2𝑦

We can rewrite this system as a matrix equation:

[𝑥′

𝑦′] = [2
1

1
2][𝑥

𝑦]

We can further refine our matrix equation by introducing a function ⃗𝑟(𝑡) = [𝑥(𝑡)
𝑦(𝑡)]. Since the

derivative of a multivariable function is the derivative of each of its components, ⃗𝑟′(𝑡) = [𝑥′(𝑡)
𝑦′(𝑡)],

and so the system can be rewritten as

⃗𝑟′ = [2
1

1
2] ⃗𝑟.

Differential equations written in this way are said to be expressed in matrix form.
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Matrix Form. A system of differential equations

𝑥′
1(𝑡) = ⋯

𝑥′
2(𝑡) = ⋯

⋮

is written in matrix form if it is expressed as

⃗𝑥′(𝑡) = 𝑀 ⃗𝑥(𝑡)

where ⃗𝑥 = [
𝑥1
𝑥2
⋮
] and 𝑀  is a matrix with real entries.

Eigenvectors and Guessing Solutions
The equation ⃗𝑟′ = [2

1
1
2] ⃗𝑟 looks a lot like our previous equation 𝑦′ = 𝑘𝑦, so we might get lucky

and be able to guess a solution!

Let’s start by guessing a solution of the form

⃗𝑟(𝑡) = [𝐴
𝐵]𝑒𝑘𝑡 = [𝐴𝑒𝑘𝑡

𝐵𝑒𝑘𝑡],

where 𝐴, 𝐵, 𝑘 ∈ ℝ are parameters. This implies

⃗𝑟′(𝑡) = [𝑘𝐴𝑒𝑘𝑡

𝑘𝐵𝑒𝑘𝑡] = 𝑘[𝐴𝑒𝑘𝑡

𝐵𝑒𝑘𝑡] = 𝑘  ⃗𝑟(𝑡).

From the original differential equation, we know ⃗𝑟′ = [2
1

1
2] ⃗𝑟. Combining this with our previous

computation gives us

⃗𝑟′ = [2
1

1
2] ⃗𝑟 = 𝑘  ⃗𝑟.

In other words, ⃗𝑟 must be an eigenvector of [2
1

1
2] with eigenvalue 𝑘!

Computing, we see the eigenvectors of [2
1

1
2] are

𝑣1 = [1
1]  with eigenvalue 3 and 𝑣2 = [ 1

−1]  with eigenvalue 1.

Thus we guess solutions

⃗𝑟1(𝑡) = [1
1]𝑒3𝑡 = [𝑒3𝑡

𝑒3𝑡] and ⃗𝑟2(𝑡) = [ 1
−1]𝑒𝑡 = [ 𝑒𝑡

−𝑒𝑡].

Verifying, we see that both ⃗𝑟1 and ⃗𝑟2 are solutions!

The Subspace of Solutions
Recall the system of differential equations

𝑥′ = 2𝑥 + 𝑦
𝑦′ = 𝑥 + 2𝑦

expressed in matrix form as

⃗𝑟′ = [2
1

1
2] ⃗𝑟
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where ⃗𝑟(𝑡) = [𝑥(𝑡)
𝑦(𝑡)]. By guessing and checking, we found two solutions

⃗𝑟1(𝑡) = 𝑒3𝑡[1
1] and ⃗𝑟2(𝑡) = 𝑒−𝑡[ 1

−1],

but are there others?

In the case of the single-variable equation 𝑦′ = 7𝑦, we noticed that multiplying a solution by
a constant gave another solution. Will the same work in this case? Let’s try.

Example. Decide whether 𝛼  ⃗𝑟1 and 𝛽  ⃗𝑟2 are solutions, where 𝛼, 𝛽 ∈ ℝ are constants.

We can test if something is a solution to a differential equation by plugging it in. On the
one hand, we have

(𝛼  ⃗𝑟1(𝑡))
′ = 𝛼  ⃗𝑟′

1(𝑡) = 𝛼 3  ⃗𝑟1(𝑡).

On the other hand, we have

[2
1

1
2](𝛼  ⃗𝑟1(𝑡)) = 𝛼[2

1
1
2] ⃗𝑟1(𝑡) = 𝛼 3  ⃗𝑟1(𝑡),

and so (𝛼  ⃗𝑟1(𝑡)) = [2
1

1
2](𝛼  ⃗𝑟1(𝑡)), showing that 𝛼  ⃗𝑟1(𝑡) is a solution no matter the value of

𝛼. A similar computation shows that 𝛽  ⃗𝑟2(𝑡) is a solution for any value of 𝛽.

The preceding example can be generalized to show that if you have a solution to a matrix
differential equation, then all scalar multiples of that solution are also solutions. This is in turn
a special case of a more general theorem.

Theorem (Solutions Form a Subspace)

Let ⃗𝑟′ = 𝑀 ⃗𝑟 be a matrix differential equation and let 𝒮 be the set of all solutions. Then, 𝒮
is a subspace. In particular, 𝒮 is closed under linear combinations.

Proof: Suppose that 𝒮 is the set of all solutions to ⃗𝑟′ = 𝑀 ⃗𝑟 (where 𝑀  is a square matrix). First,
notice that

⃗0′ = ⃗0 = 𝑀 ⃗0,

so ⃗0 ∈ 𝒮. Next, suppose that ⃗𝑠1 and ⃗𝑠2 are solutions in 𝒮. By definition, that means ⃗𝑠′
1 = 𝑀 ⃗𝑠1

and ⃗𝑠′
2 = 𝑀 ⃗𝑠2. By the linearity of the derivative, we may now compute

(𝛼  ⃗𝑠1 + 𝛽  ⃗𝑠2)
′ = 𝛼  ⃗𝑠′

1 + 𝛽  ⃗𝑠′
2

= 𝛼 𝑀 ⃗𝑠1 + 𝛽 𝑀 ⃗𝑠2

= 𝑀(𝛼  ⃗𝑠1 + 𝛽  ⃗𝑠2),

and so 𝛼  ⃗𝑠1 + 𝛽  ⃗𝑠2 is also a solution in 𝒮.

■

Given the above theorem, we can find all sorts of solutions to ⃗𝑟′(𝑡) = [2
1

1
2] ⃗𝑟(𝑡), like

⃗𝑟1(𝑡) + 4  ⃗𝑟2(𝑡) = [𝑒3𝑡 + 4 𝑒𝑡

𝑒3𝑡 − 4 𝑒𝑡] or −2  ⃗𝑟1(𝑡) + 3  ⃗𝑟2(𝑡) = [−2 𝑒3𝑡 + 3 𝑒𝑡

−2 𝑒3𝑡 − 3 𝑒𝑡].
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But, have we found all the solutions? To answer that question we need to dive deeper into the
linear algebra of the solution space.

Linear Algebra of the Solution Space
You’re familiar with the vector spaces ℝ𝑛, but the set of all function from ℝ to ℝ𝑛, denoted
ℱ𝑛, also forms a vector space. To quickly check, notice that the constant function 𝑧(𝑡) = 0 acts
like the “zero vector”, and if 𝑓 : ℝ → ℝ and 𝑔 : ℝ → ℝ are functions, then so is 𝛼 ⋅ 𝑓 + 𝛽 ⋅ 𝑔.14

The space ℱ𝑛 is large. In fact, it is infinite dimensional, but the theorems of linear algebra still
apply (provided the proper definitions).

Linear Dependence & Independence of Functions. The functions ⃗𝑣1(𝑡), ⃗𝑣2(𝑡), …, ⃗𝑣𝑛(𝑡)
are linearly dependent if there is a non-trivial linear combination of ⃗𝑣1(𝑡), …, ⃗𝑣𝑛(𝑡) that
equals the zero for all 𝑡 ∈ ℝ.

Otherwise they are linearly independent.

Example. Let 𝑓(𝑥) = 𝑥2, 𝑔(𝑥) = 𝑥, and ℎ(𝑥) = 2𝑥2 − 𝑥. Show that {𝑓, 𝑔} ⊆ ℱ1 is linearly
independent but {𝑓, 𝑔, ℎ} ⊆ ℱ1 is linearly dependent

Consider the set {𝑓, 𝑔}. We can attempt to solve the equation

𝛼𝑓(𝑥) + 𝛽𝑔(𝑥) = 0

Expanding, we see

𝛼𝑓(𝑥) + 𝛽𝑔(𝑥) = 𝛼𝑥2 + 𝛽𝑥 = 0.

Since this equation must hold true for all 𝑥, it must hold true for 𝑥 = 1. Therefore,

𝛼𝑓(1) + 𝛽𝑔(1) = 𝛼12 + 𝛽1 = 𝛼 + 𝛽 = 0.

Similarly, it must hold true for 𝑥 = 2, and so

𝛼𝑓(2) + 𝛽𝑔(2) = 𝛼22 + 𝛽2 = 4𝛼 + 2𝛽 = 0.

From the first equation, we see that 𝛼 = −𝛽 and from the second that 𝛼 = −1
2𝛽. The only

way for both of these conditions to be satisfied is if 𝛼 = 0 and 𝛽 = 0. Thus {𝑓, 𝑔} is linearly
independent.

Alternatively, consider the set {𝑓, 𝑔, ℎ}. We can attempt to solve the equation

𝛼𝑓(𝑥) + 𝛽𝑔(𝑥) + 𝛾ℎ(𝑥) = 𝛼𝑥2 + 𝛽𝑥 + 𝛾(2𝑥2 − 𝑥) = 0,

which, by inspection, has a non-trivial solution 𝛼 = −2, 𝛽 = 1, and 𝛾 = 1. Thus {𝑓, 𝑔, ℎ} are
linearly dependent.

A historical technique for determining whether a set of functions is linearly independent is
to compute the determinant of the Wronskian matrix;15 while appeal to the Wronskian is
occasionally useful, we will stick with direct approaches in this text.

With the definition of linear independence/dependence pinned down, we can apply the usual
Linear Algebra definitions of subspace, basis, and dimension to ℱ𝑛.

14To fully check, you must check that all the vector space axioms hold.
15See https://en.wikipedia.org/wiki/Wronskian
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Dimension of the solution space
So far, we have established that solutions to matrix differential equations form a subspace,
and as a subspace space, they must have a dimension16. Our next goal will be to establish the
dimension of the solution space to a matrix differential equation and then to find a general
solution.

The following theorem will give us a place to start.

Theorem (Existence & Uniqueness 1)

The system of differential equations represented by ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) + ⃗𝑝 (or the single differ-
ential equation 𝑦′ = 𝑎𝑦 + 𝑏) has a unique solution passing through every initial condition.
Further, the domain of every solution is ℝ.

Now, suppose that 𝑀  is an 𝑛 × 𝑛 matrix. Let 𝒮 be the set of all solutions to ⃗𝑟′ = 𝑀 ⃗𝑟. The above
theorem states that every initial value problem

⃗𝑟′ = 𝑀 ⃗𝑟 and ⃗𝑟(𝑡0) =
[
[
[𝑥1

⋮
𝑥𝑛]

]
]

has a unique solution. Thus, the space of all solutions can be no “bigger” than the set of all
initial conditions. Notice that we have 𝑛 + 1 parameters to choose for initial conditions. We
have 𝑛 choices coming from 𝑥1, …, 𝑥𝑛 with one more choice coming from the value of 𝑡0.

This means that the dimension of 𝒮 is bounded above by 𝑛 + 1.17 But, we can do slightly better.

Theorem (Solutions pass through 𝑡 = 0)

Let �⃗� be a solution to the initial value problem ⃗𝑟′ = 𝑀 ⃗𝑟 with initial condition ⃗𝑟(𝑡0) = ⃗𝑟0.
Then, �⃗� is also the solution to the initial value problem ⃗𝑟′ = 𝑀 ⃗𝑟 with initial condition ⃗𝑟(0) =
�⃗�0 where �⃗�0 = �⃗�(0).

Proof: Let �⃗� be a solution to the initial value problem ⃗𝑟′ = 𝑀 ⃗𝑟 with initial condition ⃗𝑟(𝑡0) =
⃗𝑟0. Based on the Existence & Uniqueness Theorem 1, we know �⃗�0 = �⃗�(0) is defined. Further,

since there is a solution to every initial value problem, ⃗𝑟′ = 𝑀 ⃗𝑟 with ⃗𝑟(0) = �⃗�0 has a solution.
Finally, because every solution passing through a set of initial conditions is unique, since �⃗�(𝑡)
already passes through �⃗�0, we must have that �⃗� is the unique solution to the initial value
problem ⃗𝑟′ = 𝑀 ⃗𝑟 with initial condition ⃗𝑟(0) = �⃗�0. ■

The preceding theorem shrinks the space of solutions. Originally we knew that the set of all
solutions can be obtained by solving initial value problems for all choices of 𝑥1, …, 𝑥𝑛, and 𝑡0.
But now we know that fixing 𝑡0 = 0 gives us the same solutions. Thus, by making 𝑛 choices,
we can determine a solution. This means

dim(𝒮) ≤ 𝑛.

This argument leads to the following theorem.

16This is a powerful theorem coming from abstract Linear Algebra and relying on the axiom of choice. We
will just accept this theorem as fact.

17To make this argument fully rigorous, you need to establish the existence of a smooth map between the
space of initial conditions and the space of solutions and then invoke the theorem that smooth maps cannot
increase the dimension of a space.
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Theorem (Solution Space Upper Bound)

Let 𝑀  be an 𝑛 × 𝑛 matrix and let 𝒮 be the set of all solutions to ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡). Then

dim(𝒮) ≤ 𝑛.

Finding a basis of solutions
Recall that 𝑀  is an 𝑛 × 𝑛 matrix and that 𝒮 is the set of all solutions to ⃗𝑟′ = 𝑀 ⃗𝑟. We have
established dim(𝒮) ≤ 𝑛. We will now try to find the exact dimension and a basis for 𝒮.

Before reading this part of the module, you should work through the core exercises 32 – 38 to
understand where the idea comes from. XXX Think about whether this becomes a consistent
margin note, at the beginning of the module, or something different.

Suppose that ⃗𝑣 is an eigenvector for 𝑀  with eigenvalue 𝜆 and consider ⃗𝑠(𝑡) = ⃗𝑣𝑒𝜆𝑡. Multiplying
by 𝑀  we get

𝑀 ⃗𝑠(𝑡) = 𝑀( ⃗𝑣𝑒𝜆𝑡) = 𝑀 ⃗𝑣𝑒𝜆𝑡 = 𝜆 ⃗𝑣𝑒𝜆𝑡 = 𝜆 ⃗𝑠(𝑡).

Similarly, taking a derivative with respect to 𝑡, we get

d
d𝑡 ⃗𝑠(𝑡) = 𝜆 ⃗𝑣𝑒𝜆𝑡 = 𝜆 ⃗𝑠(𝑡).

In other words, ⃗𝑠′ = 𝜆 ⃗𝑠 = 𝑀 ⃗𝑠, and so ⃗𝑠 is a solution to our differential equation. This means
that whenever we have an eigenvector/eigenvalue for 𝑀 , we can write down an explicit
solution to ⃗𝑟′ = 𝑀 ⃗𝑟. Solutions constructed this way are called eigen solutions.

Eigen Solution. Let 𝑀  be an 𝑛 × 𝑛 matrix and let ⃗𝑣 be an eigenvector for 𝑀  with associated
eigenvalue 𝜆. The function

⃗𝑟(𝑡) = ⃗𝑣𝑒𝜆𝑡

is called an eigen solution of the differential equation ⃗𝑟′ = 𝑀 ⃗𝑟.

We just proved that any eigen solution to ⃗𝑟′ = 𝑀 ⃗𝑟 is, indeed, a solution. Since eigen solutions
corresponding to linearly independent eigenvectors are linearly independent (justify this fact
to yourself), we know

dim(𝒮) ≥ # linearly independent eigenvectors of 𝑀.

Thus, if 𝑀  has 𝑛 linearly independent eigenvectors (i.e., if 𝑀  is diagnoalizable), then

dim(𝒮) ≥ 𝑛.

Combined with our previous result, we now have the following theorem.

Theorem (Solution Space Dimension)

Let 𝑀  be an 𝑛 × 𝑛 matrix and let 𝒮 be the set of all solutions to ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡). Then, if 𝑀
is diagonalizable,

dim(𝒮) = 𝑛.

In this text, we will only consider matrix differential equations where the matrix is diagonal-
izable, but the above theorem also holds when 𝑀  is not diagonalizable. However, the proof
relies on finding a basis of solutions, some of which are not eigen solutions.
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Solutions of systems with real eigenvalues
The preceding section shows us that if we have a full set of eigenvectors18 for a matrix 𝑀 , every
solution can be expressed as a linear combination of the eigen solutions.

Example. Find all solutions of the system of differential equations

d𝑥
d𝑡

= 2𝑥 + 𝑦

d𝑦
d𝑡

= 𝑥 + 2𝑦

We can write this system in matrix form as:

[
d𝑥
d𝑡
d𝑦
d𝑡

] = [2
1

1
2][𝑥

𝑦]

and if we let ⃗𝑟 = [𝑥
𝑦] and 𝑀 = [2

1
1
2], we can write the system as:

d ⃗𝑟
d𝑡

= 𝑀 ⃗𝑟,

where ⃗𝑟 is a vector of the two dependent variables and 𝑀  is the coefficient matrix.

We can find the eigenvalues and eigenvectors of the matrix 𝑀 :

•𝜆1 = 3 with eigenvector 𝑣1 = [1
1],

•𝜆2 = 1 with eigenvector 𝑣2 = [ 1
−1].

We can now write the eigen solutions of the system of differential equations:

⃗𝑟1(𝑡) = 𝑣1𝑒3𝑡 = [1
1]𝑒3𝑡,

⃗𝑟2(𝑡) = 𝑣2𝑒1𝑡 = [ 1
−1]𝑒1𝑡.

Linear combination of these two solutions form general solution:

⃗𝑟(𝑡) = 𝛼[1
1]𝑒3𝑡 + 𝛽[ 1

−1]𝑒1𝑡,

where 𝛼 and 𝛽 are constants that depend on the initial conditions of the system.

Example. Find the solution to ⃗𝑟′ = [2
1

1
2] ⃗𝑟 that satisfies ⃗𝑟(0) = [1

0].

We already found the general solution to ⃗𝑟′ = [2
1

1
2] ⃗𝑟:

⃗𝑟(𝑡) = 𝛼[1
1]𝑒3𝑡 + 𝛽[ 1

−1]𝑒1𝑡,

where 𝛼 and 𝛽 are parameters.

Since we require ⃗𝑟(0) = [1
0], we can solve

18“full set” means that for an 𝑛 × 𝑛 matrix we have 𝑛 linearly independent eigenvectors.
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⃗𝑟(0) = 𝛼[1
1]𝑒3⋅0 + 𝛽[ 1

−1]𝑒1⋅0

[1
0] = 𝛼[1

1] + 𝛽[ 1
−1]

to get 𝛼 = 1
2  and 𝛽 = 1

2 . Thus the solution that satisfies the initial condition is:

⃗𝑟(𝑡) = (1
2
)[1

1]𝑒3𝑡 + (1
2
)[ 1

−1]𝑒1𝑡

= (1
2
)[𝑒3𝑡 + 𝑒𝑡

𝑒3𝑡 − 𝑒𝑡].

Eigen solutions in phase space
XXX Finish

Stability of the Equilibrium Solutions
Now that we have a method to find the solutions of a system of differential equations with
constant coefficients, we can study the question:

As time goes to infinity, what is the long-term behaviour of solutions? Do they tend
towards or away from the equilibrium solution(s)?

First note that if ⃗𝑠 is an equilibrium solution to ⃗𝑟′ = 𝑀 ⃗𝑟, then ⃗𝑠′(𝑡) = ⃗0 which implies 𝑀 ⃗𝑠 =
⃗0. This means that if 𝑀  is invertible, the equation ⃗𝑟′ = 𝑀 ⃗𝑟 has a unique equilibrium solution:
⃗𝑠′(𝑡) = ⃗0. Further, all equilibrium solutions can be found by analyzing the null space of 𝑀 .

For illustration purposes, let us now consider a 2 × 2 matrix 𝑀  with real and distinct eigen-
values 𝜆1 ≠ 𝜆2 and corresponding eigenvectors ⃗𝑣1 and ⃗𝑣2. The general solution to the equation
⃗𝑟′ = 𝑀 ⃗𝑟 is

⃗𝑟(𝑡) = 𝑐1 ⃗𝑣1𝑒𝜆1𝑡 + 𝑐2 ⃗𝑣2𝑒𝜆2𝑡,

where 𝑐1 and 𝑐2 parameters. We want to study the long-term behaviour of solutions, which
depends on the long-term behaviour of the exponential function:

lim
𝑡→∞

𝑒𝜆𝑡 =
{{
{
{{0  if 𝜆 < 0

1  if 𝜆 = 0
∞  if 𝜆 > 0

.

We immediately see:
•If 𝜆1 < 0 and 𝜆2 < 0, then lim𝑡→∞ ⃗𝑟(𝑡) = ⃗0 no matter the values of 𝑐1 and 𝑐2.
•If 𝜆1 > 0 and 𝜆2 > 0, then lim𝑡→∞ ⃗𝑟(𝑡) diverges as long as at least one of 𝑐1 and 𝑐2 are

non-zero.

What can this tell us about the stability of the equilibrium solution?

Recall the informal classification of equilibrium solutions19 from Module 4.

19Check Module 4 for the precise definition.
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Classification of Equilibria. An equilibrium solution 𝑓  is called
•attracting if locally, solutions converge to 𝑓;
•repelling if there is a fixed distance so that locally, solutions tend away from 𝑓  by that

fixed distance;
•stable if for any fixed distance, locally, solutions stay within that fixed distance of 𝑓; and,
•unstable if 𝑓  is not stable.

Now consider the equilibrium solution ⃗𝑠(𝑡) = ⃗0.20 If ⃗𝑟(𝑡) = 𝑐1 ⃗𝑣1𝑒𝜆1𝑡 + 𝑐2 ⃗𝑣2𝑒𝜆2𝑡 is “close to”
⃗𝑠(𝑡) = ⃗0 at time 𝑡 = 0, then 𝑐1 and 𝑐2 are close to zero. We can now consider cases based on

𝜆1 and 𝜆2:

•If 𝜆1 or 𝜆2 is positive, then there will be solutions that diverge ⟹ ⃗𝑠 is unstable.
•If 𝜆1 and 𝜆2 are negative, then all solutions will converge zero ⟹ ⃗𝑠 is stable and attracting.
•If one of 𝜆1 or 𝜆2 is zero, then there are constant solutions near ⃗𝑠 ⟹ ⃗𝑠 is not attracting nor

repelling.
•If 𝜆1 = 0 and 𝜆2 < 0, then ⃗𝑠 will be stable, because solutions either converge to the

equilibrium ( ⃗0) or are constant solutions.
•If 𝜆1 = 0 and 𝜆2 > 0, then ⃗𝑠 will be unstable, because solutions either diverge to infinity

or are constant solutions.

The following tables summarize our findings:

Eigenvalue 𝜆1 Eigenvalue 𝜆2 Stability of Equilibrium

𝜆1 < 0 𝜆2 < 0 Stable and Attracting

𝜆1 > 0 𝜆2 > 0 Unstable and Repelling

𝜆1 < 0 𝜆2 > 0 Unstable

𝜆1 = 0 𝜆2 = 0 Stable

𝜆1 = 0 𝜆2 < 0 Stable

𝜆1 = 0 𝜆2 > 0 Unstable

or

Sign of Eigenvalues Stability of Equilibrium

Both negative Stable and Attracting

Both positive Unstable and Repelling

One negative, one positive Unstable

Both zero Stable

One is zero, one is negative Stable

One is zero, one is positive Unstable

Example. Suppose ⃗𝑟′ = 𝑀 ⃗𝑟 has a general solution

⃗𝑟(𝑡) = 𝛼[1
1]𝑒𝑡 + 𝛽[0

1]𝑒−𝑡.

Prove that the equilibrium solution ⃗𝑠(𝑡) = ⃗0 unstable and not repelling.

XXX Finish

20There may be other equilibrium solutions, but this equilibrium solution always exists.
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Practice Problems
1. Let 𝑆 be the set of all solutions to

⃗𝑟(𝑡) = [1
0

0
2] ⃗𝑟(𝑡).

(a) Show that dim(𝑆) ≥ 2 by finding at
least two linearly independent solu-
tions.

(b) Let 𝐼  be the set of all initial condi-
tions. What is 𝐼?

(c) Show that dim(𝑆) ≤ 3 by applying
the theorem to the set of initial con-
ditions.

(d) Can two points in 𝐼  correspond to
the same solution? Explain?

(e) Find a subset 𝑈 ⊆ 𝐼  so that every
solution corresponds to a unique
point in 𝑈 .

(f) Show that dim(𝑆) ≤ 2.

(g) Suppose 𝑀  is an 𝑛 × 𝑛 matrix.
Consider the differential equation
⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡). If you have found 𝑛

linearly independent solutions, can
you determine the dimension of the
set of all solutions? Explain.

2. A second question.
3. A third question.

Solutions for Module 6
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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32 Consider the system of differential equations

𝑥′(𝑡) = 𝑥(𝑡)
𝑦′(𝑡) = 2𝑦(𝑡)

32.1 Make a phase portrait for the system.

https://www.desmos.com/calculator/h3wtwjghv0

32.1 What are the equilibrium solution(s) of the system?

32.2 Find a formula for 𝑥(𝑡) and 𝑦(𝑡) that satisfy the initial conditions (𝑥(0), 𝑦(0)) = (𝑥0, 𝑦0).
32.3 Let ⃗𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡)). Find a matrix 𝐴 so that the differential equation can be equivalently

expressed as

⃗𝑟′(𝑡) = 𝐴 ⃗𝑟(𝑡).

32.4 Write a solution to ⃗𝑟′ = 𝐴 ⃗𝑟 (where 𝐴 is the matrix you came up with).

https://www.desmos.com/calculator/h3wtwjghv0


33 Let 𝐴 be an unknown matrix and suppose ⃗𝑝 and ⃗𝑞 are solutions to ⃗𝑟′ = 𝐴 ⃗𝑟.

33.1 Is ⃗𝑠(𝑡) = ⃗𝑝(𝑡) + ⃗𝑞(𝑡) a solution to ⃗𝑟′ = 𝐴 ⃗𝑟? Justify your answer.

33.2 Can you construct other solutions from ⃗𝑝 and ⃗𝑞? If yes, how so?



34
Linear Dependence & Independence (Algebraic). The vectors ⃗𝑣1, ⃗𝑣2, …, ⃗𝑣𝑛 are linearly
dependent if there is a non-trivial linear combination of ⃗𝑣1, …, ⃗𝑣𝑛 that equals the zero vector.
Otherwise they are linearly independent.

Define

⃗𝑝(𝑡) = (𝑒𝑡

0) ⃗𝑞(𝑡) = (4𝑒𝑡

0 ) ℎ⃗(𝑡) = ( 0
𝑒2𝑡) ⃗𝑧(𝑡) = ( 0

𝑒3𝑡).

34.1 Are ⃗𝑝 and ⃗𝑞 linearly independent or linearly dependent? Justify with the definition.

34.2 Are ⃗𝑝 and ℎ⃗ linearly independent or linearly dependent? Justify with the definition.

34.3 Are ℎ⃗ and ⃗𝑧 linearly independent or linearly dependent? Justify with the definition.

34.4 Is the set of three functions { ⃗𝑝, ℎ⃗, ⃗𝑧} linearly independent or linearly dependent? Justify with
the definition.



35 Recall

⃗𝑝(𝑡) = [𝑒𝑡

0 ] ⃗𝑞(𝑡) = [4𝑒𝑡

0 ] ℎ⃗(𝑡) = [ 0
𝑒2𝑡] ⃗𝑧(𝑡) = [ 0

𝑒3𝑡].

35.1 Describe span{ ⃗𝑝, ℎ⃗}. What is its dimension? What is a basis for it?

35.2 Let 𝑆 be the set of all solutions to ⃗𝑟′(𝑡) = [1
0

0
2] ⃗𝑟(𝑡). (You’ve seen this equation before.)

Is 𝑆 a subspace? If so, what is its dimension?

35.3 Provided 𝑆 is a subspace, give a basis for 𝑆.



36 Consider the differential equation

𝑦′(𝑡) = 2 · 𝑦(𝑡).

36.1 Write a solution whose graph passes through the point (𝑡, 𝑦) = (0, 3).
36.2 Write a solution whose graph passes through the point (𝑡, 𝑦) = (0, 𝑦0).
36.3 Write a solution whose graph passes through the point (𝑡, 𝑦) = (𝑡0, 𝑦0).
36.4 Consider the following argument:

For every point (𝑡0, 𝑦0), there is a corresponding solution to 𝑦′(𝑡) = 2 · 𝑦(𝑡).

Since {(𝑡0, 𝑦0) : 𝑡0, 𝑦0 ∈ ℝ} is two dimensional, this means the set of solutions to 𝑦′(𝑡) =
2 · 𝑦(𝑡) is two dimensional.

Do you agree? Explain.



37 XXX TO BE REMOVED - ADDED TO MODULE 6 PRACTICE PROBLEMS

Theorem (Existence & Uniqueness 1)

The system of differential equations represented by ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) + ⃗𝑝 (or the single differential
equation 𝑦′ = 𝑎𝑦 + 𝑏) has a unique solution passing through every initial condition. Further,
the domain of every solution is ℝ.

Let 𝑆 be the set of all solutions to ⃗𝑟(𝑡) = [1
0

0
2] ⃗𝑟(𝑡).

37.1 Show that dim(𝑆) ≥ 2 by finding at least two linearly independent solutions.

37.2 Let 𝐼  be the set of all initial conditions. What is 𝐼?

37.3 Show that dim(𝑆) ≤ 3 by applying the theorem to the set of initial conditions.

37.4 Can two points in 𝐼  correspond to the same solution? Explain?

37.5 Find a subset 𝑈 ⊆ 𝐼  so that every solution corresponds to a unique point in 𝑈 .

37.6 Show that dim(𝑆) ≤ 2.

37.7 Suppose 𝑀  is an 𝑛 × 𝑛 matrix. Consider the differential equation ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡). If you have
found 𝑛 linearly independent solutions, can you determine the dimension of the set of all
solutions? Explain.



38 Consider the system

𝑥′(𝑡) = 2𝑥(𝑡)
𝑦′(𝑡) = 3𝑦(𝑡)

38.1 Rewrite the system in matrix form.

38.2 Classify the following as solutions or non-solutions to the system.

⃗𝑟1(𝑡) = 𝑒2𝑡 ⃗𝑟2(𝑡) = [𝑒2𝑡

0 ]

⃗𝑟3(𝑡) = [ 𝑒2𝑡

4𝑒3𝑡] ⃗𝑟4(𝑡) = [𝑒3𝑡

𝑒2𝑡]

⃗𝑟5(𝑡) = [0
0]

38.1 State the definition of an eigenvector for the matrix 𝑀 .

38.2 What should the definition of an eigen solution be for this system?

38.3 Which functions from 38.2 are eigen solutions?

38.4 Find an eigen solution ⃗𝑟6 that is linearly independent from ⃗𝑟2.

38.5 Let 𝑆 = span{ ⃗𝑟2, ⃗𝑟6}. Does 𝑆 contain all solutions to the system? Justify your answer.



39 Recall the system

𝑥′(𝑡) = 2𝑥(𝑡)
𝑦′(𝑡) = 3𝑦(𝑡)

has eigen solutions ⃗𝑟2(𝑡) = [𝑒2𝑡

0 ] and ⃗𝑟6(𝑡) = [ 0
𝑒3𝑡]

39.1 Sketch ⃗𝑟2 and ⃗𝑟6 in the phase plane.

39.2 Use

https://www.desmos.com/calculator/h3wtwjghv0

to make a phase portrait for the system.

39.3

In which phase plane above is the dashed (green) curve the graph of a solution to the system?
Explain.

https://www.desmos.com/calculator/h3wtwjghv0


40 Suppose 𝐴 is a 2 × 2 matrix and ⃗𝑠1 and ⃗𝑠2 are eigen solutions to ⃗𝑟′ = 𝐴 ⃗𝑟 with eigenvalues 1 and
−1, respectively.

40.1 Write possible formulas for ⃗𝑠1(𝑡) and ⃗𝑠2(𝑡).
40.2 Sketch a phase plane with graphs of ⃗𝑠1 and ⃗𝑠2 on it.

40.3 Add a non-eigen solution to your sketch.

40.4 Sketch a possible phase portrait for ⃗𝑟′ = 𝐴 ⃗𝑟. Can you extend your phase portrait to all
quadrants?



41 Consider the following phase portrait for a system of the form ⃗𝑟′ = 𝐴 ⃗𝑟 for an unknown matrix 𝐴.

41.1 Can you identify any eigen solutions?

41.2 What are the eigenvalues of 𝐴? What are their signs?



42 Consider the differential equation ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) where 𝑀 = [0
1

1
0].

42.1 Verify that [1
1] and [ 1

−1] are eigenvectors for 𝑀 . What are the corresponding eigenvalues?

42.2 (a) Is ⃗𝑟1(𝑡) = 𝑒𝑡[1
0] a solution to the differential equation? An eigen solution?

(b) Is ⃗𝑟2(𝑡) = 𝑒𝑡[1
1] a solution to the differential equation? An eigen solution?

(c) Is ⃗𝑟3(𝑡) = 𝑒2𝑡[ 1
−1] a solution to the differential equation? An eigen solution?

42.3 Find an eigen solution for the system corresponding to the eigenvalue −1. Write your answer
in vector form.

42.4 Let ⃗𝑣 be an eigenvector for 𝑀  with eigenvalue 𝜆. Explain how to write down an eigen solution
to ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) with eigenvalue 𝜆.

42.5 Let ⃗𝑣 ≠ ⃗0 be a non-eigenvector for 𝑀 . Could ⃗𝑟(𝑡) = 𝑒𝜆𝑡 ⃗𝑣 be a solution to ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) for
some 𝜆? Explain.



43 Recall the differential equation ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) where 𝑀 = [0
1

1
0].

43.1 Write down a general solution to the differential equation.

43.2 Write down a solution to the initial value problem ⃗𝑟(0) = [𝑥0
𝑦0

].

43.3 Are your answers to the first two parts the same? Do they contain the same information?



44 The phase portrait for a differential equation arising from the matrix [0
1

1
0] (left) and [1

0
0

−1] (right)

are shown.

Both have eigenvalues ±1, but they have different eigenvectors.

44.1 How are the phase portraits related to each other?

44.2 Suppose 𝑃  is a 2 × 2 matrix with eigenvalues ±1. In what ways could the phase portrait for
⃗𝑟′(𝑡) = 𝑃 ⃗𝑟(𝑡) look different from the above portraits? In what way(s) must it look the same?



45 Consider the following phase plane with lines in the direction of ⃗𝑎 (dashed green) and ⃗𝑏 (red).

⃗𝑏

⃗𝑎

45.1 Sketch a phase portrait where the directions ⃗𝑎 and ⃗𝑏 correspond to eigen solutions with
eigenvalues that are:

sign for ⃗𝑎 sign for ⃗𝑏
1 pos pos

2 neg neg

3 neg pos

4 pos neg

5 pos zero

45.2 Classify the solution at the origin for situations (1)–(5) as stable or unstable.

45.3 Would any of your classifications in the previous part change if the directions of ⃗𝑎 and ⃗𝑏
changed?



46 You are examining a differential equation ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) for an unknown 2 × 2 matrix 𝑀 .

You would like to determine whether ⃗𝑟(𝑡) = [0
0] is stable, unstable, attracting, or repelling.

46.1 Come up with a rule to determine the nature of the equilibrium solution ⃗𝑟(𝑡) = [0
0] based on

the eigenvalues of 𝑀  (provided there exist two linearly independent eigen solutions).

46.2 Consider the system of differential equations

𝑥′(𝑡) = 𝑥(𝑡) + 2 ⋅ 𝑦(𝑡)
𝑦′(𝑡) = 3 ⋅ 𝑥(𝑡) − 4 ⋅ 𝑦(𝑡)

(a) Classify the stability of the equilibrium solution (𝑥(𝑡), 𝑦(𝑡)) = (0, 0) using any method
you want.

(b) Justify your answer analytically using eigenvalues.





M
od

ul
e 

7

Linear Systems with Constant Coefficients (Affine Solutions)
In this module you will learn
•What makes a differential equation affine.
•How to relate affine equations and matrix equations.
•How to solve differential equations of the form ⃗𝑟′ = 𝑀 ⃗𝑟 + ⃗𝑏.

We have a firm grasp on how to solve matrix differential equations of the form ⃗𝑟′ = 𝑀 ⃗𝑟. What
about equations of the form ⃗𝑟′ = 𝑀 ⃗𝑟 + ⃗𝑏? Unfortunately, that extra “+ ⃗𝑏” changes a lot. For
example, the solution set is no longer a subspace!

Example. Show that solutions to 𝑦′ = 2𝑦 + 1 do not form a subspace.

Since 𝑦′ = 2𝑦 + 1 is separable, we can explicitly solve to find solutions:

𝑦(𝑡) = 𝐴𝑒2𝑡 − 1
2

where 𝐴 is a parameter.

Picking the solution 𝑦1(𝑡) = −1
2  (where 𝐴 corresponds to 0) and 𝑦2(𝑡) = 𝑒2𝑡 − 1

2  (where 𝐴
corresponds to 1), let

𝑦3(𝑡) = 𝑦1(𝑡) + 𝑦2(𝑡) = −1
2

+ 𝑒2𝑡 − 1
2

= 𝑒2𝑡 − 1.

Differentiating, 𝑦3′(𝑡) = 2𝑒2𝑡 = 2𝑦3(𝑡) + 2, and so 𝑦3 is not a solution. Therefore, the solu-
tions of 𝑦′ = 2𝑦 + 1 cannot form a subspace.

The issue is that ⃗𝑟′ = 𝑀 ⃗𝑟 + ⃗𝑏 is no loner a matrix equation, it is an affine equation. Affine
equations are matrix equations plus a vector of constants, and we will soon see how to
compensate for that extra “+ ⃗𝑏”.

Centering about the Equilibrium
Let 𝑀 = [0

1
1
0] and consider the equations

�⃗�′ = 𝑀�⃗� (1)

and

⃗𝑣′ = 𝑀 ⃗𝑣 + [−1
−2]. (2)

We can make phase portraits for both of these equations.

�⃗�′ = 𝑀�⃗� ⃗𝑣′ = 𝑀 ⃗𝑣 + [−1
−2]

The phase portraits look very similar: they are shifts of each other. To figure out the exact shift,
let’s analyze the equilibrium points of both equations.

93



M
od

ul
e 

7 
—

 L
in

ea
r S

ys
te

m
s 

w
ith

 C
on

st
an

t C
oe

ffi
ci

en
ts

 (A
ffi

ne
 S

ol
ut

io
ns

)
�⃗�′ = 𝑀�⃗� = [0

0] ⟺ �⃗� = [0
0]

and

⃗𝑣′ = 𝑀 ⃗𝑣 + [−1
−2] = [0

0] ⟺ ⃗𝑣 = [2
1]

and so the phase portraits are shifted by the vector [2
1].

We can use this information to relate the solutions to �⃗�′ = 𝑀�⃗� and ⃗𝑣′ = 𝑀 ⃗𝑣 + [−1
−2] to each

other. Let ⃗𝑣 be a solution to Equation (2) and define the function

⃗𝑠(𝑡) = ⃗𝑣(𝑡) − [2
1].

We can now compute

⃗𝑠′(𝑡) = ( ⃗𝑣(𝑡) − [2
1])

′

= ⃗𝑣′(𝑡) − [2
1]

′

= ⃗𝑣′(𝑡),

because the derivative of a constant vector is ⃗0. Alternatively, multiplying by 𝑀  we get

𝑀 ⃗𝑠(𝑡) = 𝑀( ⃗𝑣(𝑡) − [2
1])

= 𝑀 ⃗𝑣(𝑡) − 𝑀[2
1]

= 𝑀 ⃗𝑣(𝑡) − [1
2] = 𝑀 ⃗𝑣(𝑡) + [−1

−2] = ⃗𝑣′(𝑡).

In other words, ⃗𝑠′ = 𝑀 ⃗𝑠, and so ⃗𝑠 is a solution to Equation (1). What we have done is called
a change of variables and the result is that we can relate solutions to the affine equation ⃗𝑣′ =
𝑀 ⃗𝑣 + [−1

−2] with solutions to the matrix equation �⃗�′ = 𝑀�⃗�.

Example. Let 𝑀 = [1
3

2
4] and suppose ⃗𝑣 is a solution to ⃗𝑣′ = 𝑀 ⃗𝑣 + [2

0]. Find a solution to

⃗𝑟′ = 𝑀 ⃗𝑟 in terms of ⃗𝑣.

XXX Finish

The processes we just followed (shifting a solution to the affine equation by its equilibrium
point to find a solution to the corresponding matrix equation) always works, and we will refer
to it as centering about the equilibrium.

Theorem (Centering about the Equilibrium)

Let 𝑀  be a matrix and ⃗𝑏 a vector and consider the differential equations:

⃗𝑟′ = 𝑀 ⃗𝑟 (3)

⃗𝑟′ = 𝑀 ⃗𝑟 + ⃗𝑏 (4)

If ⃗𝑝 is the equilibrium point of the affine equation (4) and ⃗𝑣 is a solution to the affine
equation (4), then

⃗𝑠(𝑡) = ⃗𝑣(𝑡) − ⃗𝑝
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is a solution to the matrix equation (3).

Similarly, if �⃗� is a solution to the matrix equation (3), then

⃗𝑞(𝑡) = �⃗�(𝑡) + ⃗𝑝

is a solution to the affine equation (4).

Proof: We leave the proof of this Theorem as an exercise for the reader. XXX

Solving Affine Equations
Centring (and uncentering) about the equilibrium can be used to solve affine equations. Let’s
use our example from earlier:

⃗𝑟′ = [0
1

1
0] ⃗𝑟 + [−1

−2]

By solving for ⃗𝑟′(𝑡) = ⃗0, we see that ⃗𝑟(𝑡) = [2
1] is an equilibrium solution. Next, we will

apply our eigenvector techniques to solve the related equation ⃗𝑟′ = [0
1

1
0] ⃗𝑟. This equation has

solutions

�⃗�(𝑡) = 𝐴𝑒𝑡[1
1] + 𝐵𝑒−𝑡[ 1

−1] where 𝐴 and 𝐵 are parameters.

These are not solutions to the original affine equation! However, we can define

⃗𝑠(𝑡) = �⃗�(𝑡) + [2
1] = 𝐴𝑒𝑡[1

1] + 𝐵𝑒−𝑡[ 1
−1] + [2

1] where 𝐴 and 𝐵 are parameters.

Now, we can check that ⃗𝑠 is a solution.

⃗𝑠′(𝑡) = (𝐴𝑒𝑡[1
1] + 𝐵𝑒−𝑡[ 1

−1] + [2
1])

′

= 𝐴𝑒𝑡[1
1] − 𝐵𝑒−𝑡[ 1

−1]

and

[0
1

1
0] ⃗𝑠(𝑡) + [−1

−2] = [0
1

1
0](𝐴𝑒𝑡[1

1] + 𝐵𝑒−𝑡[ 1
−1] + [2

1]) + [−1
−2]

= [0
1

1
0](𝐴𝑒𝑡[1

1] + 𝐵𝑒−𝑡[ 1
−1]) + [0

1
1
0][2

1] + [−1
−2]

= 𝐴𝑒𝑡[1
1] − 𝐵𝑒−𝑡[ 1

−1] + [1
2] + [−1

−2]

= 𝐴𝑒𝑡[1
1] − 𝐵𝑒−𝑡[ 1

−1],

and so ⃗𝑠 is a solution for every choice of 𝐴 and 𝐵.

Figuring out what to shift by
Do not try to memorize how to shift one solution to get another. Instead, spend some time
visualizing the relationship between solutions to an affine equation and its corresponding
matrix equation.

Remember: a matrix equation always has ⃗𝑟(𝑡) = ⃗0 as an equilibrium solution. So, if you think of
the phase space picture from before and translate the equilibrium solution, all other solutions
will be translated in the same way.
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XXX Annotate this diagram with an arrow showing how the equilibrium solution changes.

�⃗�′ = 𝑀�⃗� ⃗𝑣′ = 𝑀 ⃗𝑣 + [−1
−2]

Above to go from matrix to affine, we translate solutions by [2
1]. To go from affine to matrix,

we translate solutions by [−2
−1].

But, make sure to actually compute the equilibrium solution(s). When confronted with
an equation like ⃗𝑟′ = 𝑀 ⃗𝑟 + ⃗𝑝, it is tempting to claim that ⃗𝑝 is an equilibrium solution. In all
likelihood, it is not! (It is actually −𝑀−1 ⃗𝑝.)

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Module 7
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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47 Consider the following model of Social Media Usage where

𝑃(𝑡) = millions of social media posts at year 𝑡
𝑈(𝑡) = millions of social media users at year 𝑡

• (P1𝑃 ) Ignoring all else, each year posts decay proportionally to the current number of posts
with proportionality constant 1.

• (P2𝑃 ) Ignoring all else (independent of decay), posts grow by a constant amount of 2 million
posts every year.

• (P1𝑈) Ignoring all else, social media users increase/decrease in proportion to the number
of posts.

• (P2𝑈) Ignoring all else, social media users increase/decrease in proportion to the number
of users.

• (P3𝑈) Ignoring all else, 1 million people stop using the platform every year.

A school intervention is described by the parameter 𝑎 ∈ [−1
2 , 1]:

• After the intervention, the proportionality constant for (P1𝑈) is 1 − 𝑎.

• After the intervention, the proportionality constant for (P2𝑈) is 𝑎.

47.1 Model this situation using a system of differential equations. Explain which parts of your
model correspond to which premise(s).



48 The SM model of Social Media Usage is

𝑃 ′ = −𝑃 + 2
𝑈 ′ = (1 − 𝑎)𝑃 + 𝑎𝑈 − 1

where

𝑃(𝑡) = millions of social media posts at year 𝑡
𝑈(𝑡) = millions of social media users at year 𝑡

𝑎 ∈ [−1
2
, 1]

48.1 What are the equilibrium solution(s)?

48.2 Make a phase portrait for the system.

https://www.desmos.com/calculator/h3wtwjghv0

48.3 Use phase portraits to conjecture: what do you think happens to the equilibrium solution(s)
as 𝑎 transitions from negative to positive? Justify with a computation.

https://www.desmos.com/calculator/h3wtwjghv0


49 The SM model of Social Media Usage is

𝑃 ′ = −𝑃 + 2
𝑈 ′ = (1 − 𝑎)𝑃 + 𝑎𝑈 − 1

where

𝑃(𝑡) = millions of social media posts at year 𝑡
𝑈(𝑡) = millions of social media users at year 𝑡

𝑎 ∈ [−1
2
, 1]

49.1 Can you rewrite the system in matrix form? I.e., in the form ⃗𝑟′(𝑡) = 𝑀 ⃗𝑟(𝑡) for some matrix
𝑀  where ⃗𝑟(𝑡) = [𝑃(𝑡)

𝑈(𝑡)].

49.2 Define ⃗𝑠(𝑡) = [𝑆𝑃(𝑡)
𝑆𝑈(𝑡)

] to be the displacement from equilibrium in the SM model at time 𝑡
(provided an equilibrium exists).
(a) Write ⃗𝑠 in terms of 𝑃  and 𝑈 .

(b) Find ⃗𝑠′ in terms of 𝑃  and 𝑈 .

(c) Find ⃗𝑠′ in terms of 𝑆𝑃  and 𝑆𝑈 .

(d) Can one of your differential equations for ⃗𝑠 be written in matrix form? Which one?

(e) Analytically classify the equilibrium solution for your differential equation for ⃗𝑠 when 𝑎 =
−1

2 , 𝑎 = 1
2 , and 𝑎 = 1. (You may use a calculator for computing eigenvectors/values.)



50 The SM model of Social Media Usage is

𝑃 ′ = −𝑃 + 2
𝑈 ′ = (1 − 𝑎)𝑃 + 𝑎𝑈 − 1

where

𝑃(𝑡) = millions of social media posts at year 𝑡
𝑈(𝑡) = millions of social media users at year 𝑡

𝑎 ∈ [−1
2
, 1]

Some politicians have been looking at the model. They made the following posts on social media:

1. The model shows the number of posts will always be increasing. SAD!

2. I see the number of social media users always increases. That’s not what we want!

3. It looks like social media is just a fad. Although users initially increase, they eventually settle down.

4. I have a dream! That one day there will be social media posts, but eventually there will be no social
media users!

50.1 For each social media post, make an educated guess about what initial conditions and what
value(s) of 𝑎 the politician was considering.

50.2 The school board wants to limit the number of social media users to fewer than 10 million.
Make a recommendation about what value of 𝑎 they should target.
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Linear Systems with Constant Coefficients (Complex Solutions)
In this module you will learn
•How to find explicit real solutions to systems of differential equations with constant coeffi-

cients when the eigenvalues of the coefficient matrix are complex.
•How the complex, distinct eigenvalues of a system of differential equations with constant

coefficients are related to the stability of the equilibrium solutions.

Complex Numbers Pre-requisites
For this module, you a basic understanding of complex numbers. We assume you are familiar
with:
•Adding, subtracting, multiplying and dividing complex numbers.
•The complex conjugate.
•Euler’s formula.

Review these topics in Appendix G before reading this module.

Finding Explicit Solutions
Techniques from Module 6 and Module 7 can be used to find explicit solutions to matrix/affine
differential equations so long as the coefficient matrix of the system has real eigenvalues.

A similar procedure can be used when the coefficient matrix has complex eigenvalues, though
some care is needed if we are hoping for our explicit solutions to be real solutions.

Consider the system

𝑥′ = 𝑦
𝑦′ = −4𝑥

⟷ ⃗𝑟′ = [ 0
−4

1
0] ⃗𝑟 where ⃗𝑟(𝑡) = [𝑥(𝑡)

𝑦(𝑡)]

Following Module 6, we can find explicit solutions by finding the eigenvalues and eigenvectors
of [ 0

−4
1
0]. We find eigenvalues 𝜆1 = 2𝑖 with eigenvector 𝑣1 = [−𝑖

2 ] and eigenvalue 𝜆2 = −2𝑖
with eigenvector 𝑣2 = [𝑖

2].

Using these eigenvalues and eigenvectors, we can construct two linearly independent solutions
to the system:

⃗𝑟1(𝑡) = [−𝑖
2 ]𝑒2𝑡𝑖 (5)

⃗𝑟2(𝑡) = [𝑖
2]𝑒−2𝑡𝑖 (6)

We can verify, by differentiating, that both ⃗𝑟1(𝑡) and ⃗𝑟2(𝑡) are solutions. Further, they are
linearly independent, and so the general solution to the system of differential equations is

⃗𝑟(𝑡) = 𝐴 ⃗𝑟1(𝑡) + 𝐵 ⃗𝑟2(𝑡)

where 𝐴 and 𝐵 are parameters. The issue with this general solution is that its complex.

Finding Real Solutions
We know that the matrix equation

⃗𝑟′ = [ 0
−4

1
0] ⃗𝑟

has a general solution
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⃗𝑟(𝑡) = 𝐴[−𝑖
2 ]𝑒2𝑡𝑖 + 𝐵[𝑖

2]𝑒−2𝑡𝑖. (7)

where 𝐴 and 𝐵 are parameters. However, since the problem was posed in terms of a real
equation (most likely coming from a model involving only real quantities), we would prefer a
general solution that is real-valued.

Before continuing, let’s convince ourselves that real solutions exist.

Looking at a phase portrait for the system, we can see that there should be real solutions (we
could trace them with our fingers!).

Phase Portrait for

⃗𝑟′ = [ 0
−4

1
0] ⃗𝑟

Applying Euler’s method to simulate solutions, we also see that our simulations are always
real-valued.

The question now becomes, how can we manipulate Equation (7) to find real solutions? The
answer relies on Euler’s formula.

Theorem (Euler’s Formula)

For any real number 𝑡 we have:

𝑒𝑖𝑡 = cos(𝑡) + 𝑖 sin(𝑡)

Using Euler’s formula, we can rewrite the solutions from Equation (5) and Equation (6) as

⃗𝑟1(𝑡) = [−𝑖
2 ]𝑒2𝑖𝑡 = [−𝑖

2 ](cos(2𝑡) + 𝑖 sin(2𝑡))

= [−𝑖 cos(2𝑡)
2𝑖 sin(2𝑡) ] = 𝑖[− cos(2𝑡)

2 sin(2𝑡) ]

and
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⃗𝑟2(𝑡) = [𝑖
2]𝑒−2𝑖𝑡

= [𝑖
2](cos(−2𝑡) + 𝑖 sin(−2𝑡))

= [𝑖
2](cos(2𝑡) − 𝑖 sin(2𝑡))

= [ 𝑖 cos(2𝑡)
−2𝑖 sin(2𝑡)] = 𝑖[ cos(2𝑡)

−2 sin(2𝑡)].

Thus, the general solution from Equation (7) can be rewritten as

⃗𝑟(𝑡) = 𝐴 ⃗𝑟1(𝑡) + 𝐵 ⃗𝑟2(𝑡) = 𝐴𝑖[− cos(2𝑡)
2 sin(2𝑡) ] + 𝐵𝑖[ cos(2𝑡)

−2 sin(2𝑡)]

= 𝑖(𝐴[− cos(2𝑡)
2 sin(2𝑡) ] + 𝐵[ cos(2𝑡)

−2 sin(2𝑡)])

where 𝐴 and 𝐵 are parameters. Since we are allowed to pick 𝐴 and 𝐵 to be any value we like,
we can try to pick 𝐴 and 𝐵 so that the resulting solution is real.

There are many options, but one such choice is to pick 𝐴 = −𝑖 and 𝐵 = 0, which gives

⃗𝑟3(𝑡) = 𝑖(−𝑖)[− cos(2𝑡)
2 sin(2𝑡) ] = [− cos(2𝑡)

2 sin(2𝑡) ]

as a real solution. Alternatively, we could pick 𝐴 = 0 and 𝐵 = −𝑖, which gives

⃗𝑟4(𝑡) = 𝑖(−𝑖)[ cos(2𝑡)
−2 sin(2𝑡)] = [ cos(2𝑡)

−2 sin(2𝑡)]

as a real solution. Since we now have two linearly-independent real solutions, we can write a
general real solution

⃗𝑟(𝑡) = 𝑃 ⃗𝑟3(𝑡) + 𝑄 ⃗𝑟4(𝑡) = 𝑃[− cos(2𝑡)
2 sin(2𝑡) ] + 𝑄[ cos(2𝑡)

−2 sin(2𝑡)]

where 𝑃  and 𝑄 are parameters. Here, as long as we pick 𝑃  and 𝑄 to be real numbers, the
result will be a real solution.

Other Methods to Find Real Solutions
In the previous section, we exploited the general complex solution to find the general real
solution. Specifically, we carefully chose the parameters in the general complex solution to
find two linearly independent real solutions. Then, we took the linear combination of these
two real solutions to find the general real solution. This method always works.²¹ However, it is
sometimes possible to save some time by using guess-and-check.

Consider again the general complex solution. After Equation (7) is expanded using Euler’s
formula, we have

⃗𝑟(𝑡) = 𝐴𝑖[− cos(2𝑡)
2 sin(2𝑡) ] + 𝐵𝑖[ cos(2𝑡)

−2 sin(2𝑡)].

We can then take the real and imaginary parts of this solution:

²¹That is, it works so long as there is a real solution
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⃗𝑟real(𝑡) = 0 and ⃗𝑟imag(𝑡) = 𝐴[− cos(2𝑡)
2 sin(2𝑡) ] + 𝐵[ cos(2𝑡)

−2 sin(2𝑡)].

Testing by differentiating, we can verify that ⃗𝑟real and ⃗𝑟imag are both real solutions to the original
system. In fact, ⃗𝑟imag is the general real solution we already found!

Guessing-and-checking by examining the real and imaginary parts of a complex solution will
often save you time—remember, all you need to write down a general real solution is the
correct number of linearly independent real solutions.

Example. Find the general real solution to

d𝑥
d𝑡

= 0.11𝑦

d𝑦
d𝑡

= −11𝑥

and the solution to the initial value problem 𝑥(0) = 1 and 𝑦(0) = −1.

XXX Finish

From the calculations above, we know that the general solution to the system of differential
equations is

⃗𝑟(𝑡) = 𝑐1 ⃗𝑠1(𝑡) + 𝑐2 ⃗𝑠2(𝑡).

We only need to find the constants 𝑐1 and 𝑐2 that satisfy the initial conditions ⃗𝑟(0) = [ 1
−1].

We have

[ 1
−1] = ⃗𝑟(0) = 𝑐1 ⃗𝑠1(0) + 𝑐2 ⃗𝑠2(0)

= 𝑐1[
2
0] + 𝑐2[

0
−0.22]

= [ 2𝑐1
−0.22𝑐2

]

We get 𝑐1 = 1
2  and 𝑐2 = 50

11  and the solution is

⃗𝑟(𝑡) = (1
2
) ⃗𝑠1(𝑡) + (50

11
) ⃗𝑠2(𝑡)

= [ cos(0.11𝑡) − (50
11) sin(0.11𝑡)

−0.11 sin(0.11𝑡) − cos(0.11𝑡)
].

Stability of the Equilibrium Solutions
As we have seen in Module 6, the stability of equilibrium solutions of a system of differential
equations with constant coefficients is determined by the eigenvalues of the coefficient matrix
when the eigenvalues were real and distinct.

Similarly, when the eigenvalues are complex, the stability of the equilibrium solutions is also
determined by the eigenvalues of the coefficient matrix. More specifically, the stability of the
equilibrium solutions is determined by the real part of the eigenvalues.
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Before reading the remainder of this module, we recommend that you gain some intuition
about the solutions of systems of differential equations with complex eigenvalues by solving
the core exercises in this module. XXX This paragraph should be moved to the margin.

Consider a system of differential equations

d ⃗𝑟
d𝑡

= 𝑀 ⃗𝑟,

where the eigenvalues of the coefficient matrix 𝑀  are complex: 𝜆1 = 𝑎 + 𝑖𝑏 and 𝜆2 = 𝑎 − 𝑖𝑏.

First, observe that the unique equilibrium solution is ⃗𝑟(𝑡) = [0
0], so we want to establish the

stability of this equilibrium solution.

Following the process described earlier in this module, we know that the solutions of the system
of differential equations will have the form

⃗𝑟𝑖(𝑡) = ⃗𝑣𝑖𝑒𝜆𝑖𝑡 = ⃗𝑣𝑖𝑒𝑎𝑡𝑒𝑖𝑏𝑡 = ⃗𝑣𝑖𝑒𝑎𝑡(cos(𝑏𝑡) + 𝑖 sin(𝑏𝑡)),

where ⃗𝑣𝑖 is the eigenvector associated with the eigenvalue 𝜆𝑖.

We can now study what will happen to the solutions as 𝑡 approaches infinity, by focusing on
each term of the solution

⃗𝑟𝑖(𝑡) = ⃗𝑣𝑖𝑒𝑎𝑡(cos(𝑏𝑡) + 𝑖 sin(𝑏𝑡)).

The first term ⃗𝑣𝑖 is a constant vector, so it will not affect the stability of the equilibrium solution.

The third term cos(𝑏𝑡) + 𝑖 sin(𝑎𝑡) is a periodic function, so it will not affect the stability of the
equilibrium solution either.

The only term that can affect the stability of the equilibrium solution is the second term 𝑒𝑎𝑡.

•If 𝑎 < 0, then 𝑒𝑎𝑡 will approach 0 as 𝑡 approaches infinity, and the equilibrium solution will
be stable and attracting.

•If 𝑎 > 0, then 𝑒𝑎𝑡 will approach infinity as 𝑡 approaches infinity, and the equilibrium solution
will be unstable and repelling.

•If 𝑎 = 0, then 𝑒𝑎𝑡 will be equal to 1 for all 𝑡, and the equilibrium solution will be stable but
neither attracting nor repelling.

Summary
Below we combine all the results obtained in the last modules about the stability of equilibrium
solutions of systems of differential equations with constant coefficients.

Consider the following system of differential equations

d ⃗𝑟
d𝑡

= 𝑀 ⃗𝑟 + ⃗𝑏,

where the eigenvalues of the coefficient matrix 𝑀  are 𝜆1 and 𝜆2. The stability of the equilibrium
solution ⃗𝑟(𝑡) = −𝑀−1 ⃗𝑏 is determined by the eigenvalues of the coefficient matrix 𝑀 .

Eigenvalue 𝜆1 Eigenvalue 𝜆2 Stability of Equilibrium

𝜆1 < 0 𝜆2 < 0 Stable and Attracting

𝜆1 > 0 𝜆2 > 0 Unstable and Repelling

𝜆1 < 0 𝜆2 > 0 Unstable and Repelling

𝜆1 = 0 𝜆2 < 0 Stable
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Eigenvalue 𝜆1 Eigenvalue 𝜆2 Stability of Equilibrium

𝜆1 = 0 𝜆2 > 0 Unstable

𝜆1 = 𝑎 + 𝑖𝑏, 𝑎 < 0 𝜆2 = 𝑎 − 𝑖𝑏, 𝑎 < 0 Stable and Attracting

𝜆1 = 𝑎 + 𝑖𝑏, 𝑎 > 0 𝜆2 = 𝑎 − 𝑖𝑏, 𝑎 > 0 Unstable and Repelling

𝜆1 = 𝑖𝑏 𝜆2 = −𝑖𝑏 Stable

OR

Real/Complex Sign of Eigenvalues Stability of Equilibrium

Real Both negative Stable and Attracting

Real Both positive Unstable and Repelling

Real One negative, one positive Unstable and Repelling

Real One is zero, one is negative Stable

Real One is zero, one is positive Unstable

Complex Real parts negative Stable and Attracting

Complex Real parts positive Unstable and Repelling

Complex Real parts zero Stable

XXX CHOOSE ONE TABLE!!

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Module 8
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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51 Consider the following FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

• (P1𝐹 ) Ignoring all else, the number of parasites decays in proportion to its population (with
constant 1).

• (P2𝐹 ) Ignoring all else, parasite numbers grow in proportion to the number of hosts (with
constant 1).

• (P1𝐷) Ignoring all else, hosts numbers grow in proportion to their current number (with
constant 1).

• (P2𝐷) Ignoring all else, host numbers decrease in proportion to the number of parasites (with
constant 2).

• (P1𝑐) Anti-flea collars remove 2 million fleas per year.

• (P2𝑐) Constant dog breeding adds 1 thousand dogs per year.

51.1 Write a system of differential equations for the FD model.

51.2 Can you rewrite the system in matrix form ⃗𝑟′ = 𝑀 ⃗𝑟? What about in affine form ⃗𝑟′ =
𝑀 ⃗𝑟 + ⃗𝑏?

51.3 Make a phase portrait for your model.

51.4 What should solutions to the system look like in the phase plane? What are the equilib-
rium solution(s)?



52 Recall the FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

⃗𝑟(𝑡) = [𝐹(𝑡)
𝐷(𝑡)]

and

⃗𝑟′(𝑡) = [−1
−2

1
1] ⃗𝑟(𝑡) + [−2

1 ]

Define ⃗𝑠(𝑡) to be the displacement of ⃗𝑟(𝑡) from equilibrium at time 𝑡.

52.1 Find a formula for ⃗𝑠 in terms of ⃗𝑟.

52.2 Can you find a matrix 𝑀  so that ⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡)?
52.3 What are the eigenvalues of 𝑀?

52.4 Find an eigenvector for each eigenvalue of 𝑀 .

52.5 What are the eigen solutions for ⃗𝑠′ = 𝑀 ⃗𝑠?



53 Recall the FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

⃗𝑟(𝑡) = [𝐹(𝑡)
𝐷(𝑡)] ⃗𝑠(𝑡) = ⃗𝑟(𝑡) − [3

5]

and

⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡) where 𝑀 = [−1
−2

1
1].

This equation has eigen solutions

⃗𝑠1(𝑡) = 𝑒𝑖𝑡[1 − 𝑖
2 ]

⃗𝑠2(𝑡) = 𝑒−𝑖𝑡[1 + 𝑖
2 ].

53.1 Recall Euler’s formula 𝑒𝑖𝑡 = cos(𝑡) + 𝑖 sin(𝑡).
(a) Use Euler’s formula to expand ⃗𝑠1 + ⃗𝑠2. Are there any imaginary numbers remaining?

(b) Use Euler’s formula to expand 𝑖( ⃗𝑠1 − ⃗𝑠2). Are there any imaginary numbers remaining?

53.2 Verify that your formulas for ⃗𝑠1 + ⃗𝑠2 and 𝑖( ⃗𝑠1 − ⃗𝑠2) are solutions to ⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡).
53.3 Can you give a third real solution to ⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡)?



54 Recall the FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

⃗𝑟(𝑡) = [𝐹(𝑡)
𝐷(𝑡)] ⃗𝑠(𝑡) = ⃗𝑟(𝑡) − [3

5]

and

⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡) where 𝑀 = [−1
−2

1
1].

54.1 What is the dimension of the space of solutions to ⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡)?
54.2 Give a basis for all solutions to ⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡).
54.3 Find a solution satisfying ⃗𝑠(0) = [1

3].

54.4 Using what you know, find a general formula for ⃗𝑟(𝑡).
54.5 Find a formula for ⃗𝑟(𝑡) satisfying ⃗𝑟(0) = [4

8].



55 Recall the FD model of Fleas and Dogs where

𝐹(𝑡) = number of parasites (fleas) at year 𝑡  (in millions)
𝐷(𝑡) = number of hosts (dogs) at year 𝑡  (in thousands)

⃗𝑟(𝑡) = [𝐹(𝑡)
𝐷(𝑡)] ⃗𝑠(𝑡) = ⃗𝑟(𝑡) − [3

5]

and

⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡) where 𝑀 = [−1
−2

1
1].

Some research is being done on a shampoo for the dogs. It affects flea and dog reproduction:
• (P𝑆𝐹 ) Ignoring all else, the number of parasites decays in proportion to its population with

constant 1 + 𝑎.

• (P𝑆𝐷) Ignoring all else, hosts numbers grow in proportion to their current number with
constant 1 − 𝑎.

• −1 ≤ 𝑎 ≤ 1.

These premises replace (P1𝐹 ) and (P1𝐷).

55.1 Modify the previous FD model to incorporate the effects of the shampoo.

55.2 Make a phase portrait for the FD Shampoo model.

55.3 Find the equilibrium solutions for the FD Shampoo model.

55.4 For each equilibrium solution determine its stability/instability/etc.

55.5 Analytically justify your conclusions about stability/instability/etc.



56 Consider the differential equation

⃗𝑠′(𝑡) = 𝑀 ⃗𝑠(𝑡) where 𝑀 = [−1
2

−4
3 ]

56.1 Make a phase portrait. Based on your phase portrait, classify the equilibrium solution.

https://www.desmos.com/calculator/h3wtwjghv0
56.1 Find eigen solutions for this differential equation (you may use a calculator/computer to

assist).

56.2 Find a general real solution.

56.3 Analytically classify the equilibrium solution.

https://www.desmos.com/calculator/h3wtwjghv0
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Quantitative Analysis: Linearization
In this module you will learn
•How to use linearization, the process of finding an affine approximation to a system of

differential equations, to analyze the equilibrium solutions of non-linear systems of differ-
ential equations.

•When using linearization to study equilibrium solutions is appropriate.

We have a complete theory, based on eigenvalues, for classifying the equilibria of systems
of differential equations that can be written in matrix or affine form. Unfortunately, most
equations that come from real-world models cannot be written in matrix or affine form!

Linearization
Recall the Fox and Rabbit model from Core Exercise 17:

𝐹 ′(𝑡) = 0.01 ⋅ 𝑅(𝑡) ⋅ 𝐹 (𝑡) − 1.1 ⋅ 𝐹(𝑡)
𝑅′(𝑡) = 1.1 ⋅ 𝑅(𝑡) − 0.1 ⋅ 𝐹(𝑡) ⋅ 𝑅(𝑡)

where 𝐹(𝑡) is the population of foxes (in millions) at year 𝑡 and 𝑅(𝑡) is the population of rabbits
(in millions) at year 𝑡.

Based on the phase portrait, there appears to be an unstable equilibrium at (𝐹 , 𝑅) = (0, 0) and
a stable equilibrium at (𝐹 , 𝑅) = (11, 110).

0 10 20 30 40
0

50

100

150

200

250

Foxes vs. Rabbits

We cannot use eigenvalue analysis to classify the equilibrium solutions because non-linear
systems do not have eigenvalues. However, we may be able to find a matrix/affine system that
is “close to” the Fox-and-Rabbit model and apply eigen analysis to our approximation.

Let’s focus on the equilibrium (𝐹 , 𝑅) = (0, 0). Zooming in, the phase portrait looks familiar—
very similar to the phase portrait for a matrix equation.
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We will try to figure out an approximating matrix equation via hand-wavy methods first. A
useful heuristic is that if a quantity is small, then that quantity squared is very small and can
be ignored.²² Recall our system:

𝐹 ′ = 0.01 ⋅ 𝐹 ⋅ 𝑅 − 1.1 ⋅ 𝐹
𝑅′ = 1.1 ⋅ 𝑅 − 0.1 ⋅ 𝐹 ⋅ 𝑅

We are studying the behaviour when 𝐹 ≈ 0 and 𝑅 ≈ 0, so 𝐹 ⋅ 𝑅 is very, very small. Replacing
all 𝐹 ⋅ 𝑅 terms with 0 gives us

𝐹 ′
approx = −1.1 ⋅ 𝐹approx

𝑅′
approx = 1.1 ⋅ 𝑅approx

⟺ [
𝐹approx
𝑅approx

]
′

= [−1.1
0

0
1.1][

𝐹approx
𝑅approx

]

Graphing phase portraits side-by-side, the original system and our approximating system look
very similar near (𝐹 , 𝑅) = (0, 0).

−4 −2 0 2 4

−30
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20

30
𝐹  vs. 𝑅

−4 −2 0 2 4

−30

−20

−10

0

10

20

30
𝐹approx vs. 𝑅approx

If we simulated solutions, we would find that 𝐹(𝑡) ≈ 𝐹approx(𝑡) and 𝑅(𝑡) ≈ 𝑅approx(𝑡), when
both 𝐹(𝑡) and 𝑅(𝑡) are near 0. Since 𝐹approx and 𝑅approx can be analyzed using eigen techniques
(eigenvalues of −1.1 and 1.1 mean (0, 0) is unstable), and since 𝐹  and 𝑅 behave similarly to
𝐹approx and 𝑅approx near (0, 0), we conclude that (𝐹 , 𝑅) = (0, 0) is an unstable equilibrium.

²²Look back at proofs for the derivative of 𝑥2; using limits formalizes the rule, but all higher-order terms go
to zero in the limit.
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The process of finding a matrix/affine system that closely approximates a non-linear system
near a point is called linearization.

Using Calculus to Linearize
In the previous example, we guessed our way into a linearization. But we have a more
systematic tool at our disposal: Calculus.

Recall from Calculus that for a function 𝑓 : ℝ → ℝ, the tangent line to the graph 𝑦 = 𝑓(𝑥) at
the point (𝐸, 𝑓(𝐸)) is given by

𝑦 = 𝑓(𝐸) + 𝑓 ′(𝐸)(𝑥 − 𝐸).

That means that when 𝑥 ≈ 𝐸, we have

𝑓(𝑥) ≈ 𝑓(𝐸) + 𝑓 ′(𝐸)(𝑥 − 𝐸). (8)

There is a similar formula for multi-variable functions.²³ Let ⃗𝐹 (𝑥, 𝑦) = [𝐹1(𝑥,𝑦)
𝐹2(𝑥,𝑦)] and let ⃗𝐸 ∈ ℝ2.

Then, when [𝑥
𝑦] ≈ ⃗𝐸,

⃗𝐹 (𝑥, 𝑦) ≈ ⃗𝐹( ⃗𝐸)𝐷 ⃗𝐹 ( ⃗𝐸)([𝑥
𝑦] − ⃗𝐸). (9)

Here, 𝐷 ⃗𝐹 ( ⃗𝐸) is the total derivative (also called the Jacobian matrix or Jacobian) of ⃗𝐹  at ⃗𝐸.
That is,

𝐷 ⃗𝐹 ( ⃗𝐸) =
[
[
[

𝜕𝐹1
𝜕𝑥
𝜕𝐹2
𝜕𝑥

𝜕𝐹1
𝜕𝑦
𝜕𝐹2
𝜕𝑦 ]

]
] evaluated at ⃗𝐸.

Approximations like in Equations (8) and (9) called affine approximations or first-order approx-
imations.

Example. Let ⃗𝐹 (𝑥, 𝑦) = (𝑥2𝑦, 𝑦3 − 2) and let ⃗𝐸 = (1, 1). Find an affine approximation to
⃗𝐹  at ⃗𝐸.

XXX Finish

Affine approximations are exactly the tool we need, since they turn non-linear functions into
affine ones. Let’s apply affine approximations to the Fox-and-Rabbit model.

Recall:

𝐹 ′(𝑡) = 0.01 ⋅ 𝑅(𝑡) ⋅ 𝐹 (𝑡) − 1.1 ⋅ 𝐹(𝑡)
𝑅′(𝑡) = 1.1 ⋅ 𝑅(𝑡) − 0.1 ⋅ 𝐹(𝑡) ⋅ 𝑅(𝑡)

Define �⃗�(𝑥, 𝑦) = [0.01𝑥𝑦−1.1𝑥
1.1𝑦−0.1𝑥𝑦 ]. Our equation can now be written as

[𝐹 ′(𝑡)
𝑅′(𝑡)] = �⃗�(𝐹(𝑡), 𝑅(𝑡)).

It’s important to note here that when we write 𝐹 ′ or 𝑅′, we mean d𝐹(𝑡)
d𝑡  or d𝑅(𝑡)

d𝑡 , i.e., the
derivative with respect to 𝑡. The function �⃗�, on the other hand, is a function of two variables
and helps us re-write our differential equation but is not directly related to the variable 𝑡.

To approximate our differential equation, we need to find the total derivative of �⃗�.

²³Here, we give the formula for functions ⃗𝐹 : ℝ → ℝ2, but the generalized formula also holds for functions
⃗𝐹 : ℝ → ℝ𝑛.
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𝐷 ⃗𝐺(𝑥, 𝑦) =

[
[[

𝜕
𝜕𝑥  (0.01𝑥𝑦 − 1.1𝑥)

𝜕
𝜕𝑥  (1.1𝑦 − 0.1𝑥𝑦)

𝜕
𝜕𝑦  (0.01𝑥𝑦 − 1.1𝑥)

𝜕
𝜕𝑦  (1.1𝑦 − 0.1𝑥𝑦) ]

]] = [0.01𝑦 − 1.1
−0.1𝑦

0.01𝑥
−0.1𝑥 + 1.1]

Approximating near the equilibrium (𝐹 , 𝑅) = (0, 0), we have

[
𝐹 ′

approx
𝑅′

approx
] = �⃗�(0, 0) + 𝐷 ⃗𝐺(0, 0)([

𝐹approx
𝑅approx

] − [0
0])

= [0
0] + [−1.1

0
0

1.1][
𝐹approx
𝑅approx

]

= [−1.1
0

0
1.1][

𝐹approx
𝑅approx

],

which is the same formula we found before.

We can also linearize near the equilibrium (𝐹 , 𝑅) = (11, 110).

[
𝐹 ′

approx
𝑅′

approx
] = �⃗�(11, 110) + 𝐷 ⃗𝐺(11, 110)([

𝐹approx
𝑅approx

] − [ 11
110])

= [0
0] + [ 0

−11
0.11
0 ]([

𝐹approx
𝑅approx

] − [ 11
110])

= [ 0
−11

0.11
0 ][

𝐹approx
𝑅approx

] + [−12.1
121 ].

Comparing phase portraits, we see they are quite similar near the point (𝐹, 𝑅) = (11, 110).
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Linearized Solutions vs. True Solutions
Solutions to a linearized system closely approximate solutions to the original system when the
values of the solution are near to the point of linearization.

Continuing with the Fox-and-Rabbit example, let’s focus on the linearization near (𝐹 , 𝑅) =
(11, 110). We have the original model

𝐹 ′ = 0.01 ⋅ 𝐹 ⋅ 𝑅 − 1.1 ⋅ 𝐹
𝑅′ = 1.1 ⋅ 𝑅 − 0.1 ⋅ 𝐹 ⋅ 𝑅
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and the approximate model

𝐹 ′
approx = 0.11 ⋅ 𝑅approx − 12.1

𝑅′
approx = −11 ⋅ 𝐹approx + 121.0

Using initial conditions of 𝐹 ≈ 11 and 𝑅 ≈ 110, we can compare solutions to the two systems.

(𝐹, 𝑅) = (9, 114)

Approximate solution
(solid) and true solution
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(𝐹, 𝑅) = (10, 112)
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(𝐹, 𝑅) = (10.5, 110.5)

Approximate solution
(solid) and true solution
(dashed) with initial con-
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In the figures, you can see that as the initial conditions get closer to (𝐹 , 𝑅) = (10, 110) (where
we centered our approximation), the solution to the linearized system (the solid curve)
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matches more an more closely to the solution to the original system (the dashed curve).24

Classifying Equilibria using Linearization
For suitably nice differential equations, linearization can be used to classify equilibrium solu-
tions so long as corresponding equilibrium solution in the linearized system is attracting or
repelling.

Theorem (Classification via Linearization)

Suppose �⃗� : ℝ𝑛 → ℝ𝑛 is differentiable and consider the system of differential equations
defined by

⃗𝐹 ′ = �⃗�( ⃗𝐹). (10)

Let ⃗𝐹 (𝑡) = ⃗𝐸 be an equilibrium solution to Equation (10) and let ⃗𝐹 ′
approx = … be the

linearization of Equation (10) centered at ⃗𝐸.

Then, the following hold.
•If ⃗𝐹approx(𝑡) = ⃗𝐸 is an attracting equilibrium solution then ⃗𝐹 (𝑡) = ⃗𝐸 is an attracting

equilibrium solution.
•If ⃗𝐹approx(𝑡) = ⃗𝐸 is an repelling equilibrium solution then ⃗𝐹 (𝑡) = ⃗𝐸 is an repelling

equilibrium solution.
•If ⃗𝐹approx(𝑡) = ⃗𝐸 is neither attracting nor repelling, the nature of ⃗𝐹 (𝑡) = ⃗𝐸 cannot be

determined from the linearization.

Why is the above theorem limited? What can go wrong in the case of stable/unstable equilibria
that are not attracting/repelling?

Identical Linearization for Different Systems
Consider the following two systems of differential equations:

𝑥′
lin = −𝑦lin

𝑦′
lin = 𝑥lin

(11)

and

𝑥′
nonlin = −𝑦nonlin − 𝑥3

nonlin

𝑦′
nonlin = 𝑥nonlin

(12)

The both have an equilibrium solutions (𝑥(𝑡), 𝑦(𝑡)) = (0, 0). Since Equation (11) can be
rewritten as a matrix equation, we can solve it explicitly:

𝑥lin(𝑡) = 𝐴 cos(𝑡) − 𝐵 sin(𝑡)
𝑦lin(𝑡) = 𝐴 sin(𝑡) + 𝐵 cos(𝑡)

where 𝐴, 𝐵 ∈ ℝ are parameters.

From this, we see that the equilibrium solution at the origin for Equation (11) is stable and not
attracting.

Unfortunately, Equation (12) is not so easily solved, so we use other tools.

24You might wonder if the reduction in error is meaningful. Since as (𝐹 , 𝑅) → (10, 110), solutions look more
and more constant, there is less oscillation overall when initial conditions are close to (10, 110). Thus, we would
expect approximations (provided that they also oscillate less) to more closely match the original system. This is
certainly true and is an observation about absolute error. However, if you pay attention to the scale on the axes
of the figures, you see that the relative error is decreasing. That is, even if you zoom in (negating the lessening
of oscillations), the approximation still more closely matches the true solution.
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Looking at a phase portrait for Equation (12), it looks like the arrows might be spiralling in, but
it is hard to tell. Overlaying with a simulated solution, the solution appears to spiral towards
the origin.

−1.0 −0.5 0.0 0.5 1.0
𝑥nonlin

−1.0

−0.5

0.0

0.5

1.0

𝑦 n
on

lin

A phase portrait for Equation (12) overlayed with a simulated solution
starting at 𝑥nonlin(0) = 1 and 𝑦nonlin(0) = 1

2 .

We can make our analysis rigorous by analyzing Equation (12) directly. If solutions spiral
towards the origin, then there should consistently be a component of [𝑥′

nonlin
𝑦′

nonlin
] that points towards

the origin. Since, at the point [𝑥
𝑦], the vector [−𝑥

−𝑦] points towards the origin, we can use linear

algebra to find the component of [𝑥′
nonlin

𝑦′
nonlin

] = [−𝑦−𝑥3

𝑥 ] that points in the direction of [−𝑥
−𝑦]. After

computing, we see

[𝑥′
nonlin

𝑦′
nonlin

] = 𝑥4

√𝑥2 + 𝑦2
[−𝑥
−𝑦] + 𝑦𝑥3 + 𝑥2 + 𝑦2

√𝑥2 + 𝑦2
[−𝑦

𝑥 ],

and so, as long as 𝑥 ≠ 0, the vector [𝑥′
nonlin

𝑦′
nonlin

] points towards the origin (and never points away

from the origin). Since 𝑥 = 0 and 𝑦 ≠ 0 is not an equilibrium solution, we conclude that all
non-equilibrium solutions spiral towards the origin.

The conclusion is that for Equation (12), the equilibrium solution is stable and attracting.

Now, let’s see what linearization tells us. It turns out that linearizing Equation (11) and
Equation (12) at the origin both result in the same formula.

𝑥′
approx = −𝑦approx

𝑦′
approx = 𝑥approx

(13)

The equilibrium solution for Equation (13) is stable and not attracting/repelling. We can
summarize what we’ve just learned in a table.

Equation Equilibrium Classification Equilibrium of Linearization

𝑥′
lin = −𝑦lin

𝑦′
lin = 𝑥lin

stable, not attracting/repelling stable, not attracting/repelling
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Equation Equilibrium Classification Equilibrium of Linearization

𝑥′
nonlin = −𝑦nonlin − 𝑥3

nonlin

𝑦′
nonlin = 𝑥nonlin

stable, attracting stable, not attracting/repelling

From this example, we can see that if the linearization of a system of differential equations
has a stable equilibrium that is not attracting nor repelling, we don’t know much about the
original system. Its corresponding equilibrium could be stable and attracting, stable and not
attracting, or unstable!

XXX Add part about where solutions to the linearized system drift out of phase with the
original?

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Module 9
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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57 Recall the tree model from Core Exercise 28:

• 𝐻(𝑡) = height (in meters) of tree trunk at time 𝑡
• 𝐴(𝑡) = surface area (in square meters) of all leaves at time 𝑡

𝐻′(𝑡) = 0.3 ⋅ 𝐴(𝑡) − 𝑏 ⋅ 𝐻(𝑡)

𝐴′(𝑡) = −0.3 ⋅ (𝐻(𝑡))2 + 𝐴(𝑡)

and 0 ≤ 𝑏 ≤ 2

A phase portrait for this model is available at

https://www.desmos.com/calculator/tvjag852ja

57.1 Visually classify the stability of each equilibrium solution as attracting/repelling/etc. Does the
stability depend on 𝑏? Are you confident in your visual assessment?

57.2 Can you rewrite the system in matrix/affine form? Why or why not?

https://www.desmos.com/calculator/tvjag852ja


58 A simple logistic model for a population is

d𝑃
d𝑡

= 𝑃(𝑡) ⋅ (1 − 𝑃(𝑡)
2

)

where 𝑃(𝑡) represents the population at time 𝑡.

We’d like to approximate d𝑃
d𝑡  when 𝑃 ≈ 1

2 .

58.1 What is the value of d𝑃
d𝑡  when 𝑃 = 1

2?

58.2 Define 𝑓(𝑃 ) = 𝑃 ⋅ (1 − 𝑃
2 ) and notice d𝑃

d𝑡 = 𝑓(𝑃(𝑡)).

Approximate d𝑃
d𝑡  (i.e, approximate 𝑓) when 𝑃 = 1

2 + Δ and Δ is small.

58.3 Write down an approximation 𝑆(Δ) that approximates d𝑃
d𝑡  when 𝑃  is Δ away from 1

2 .

58.4 Let 𝐴1
2
(𝑃 ) be an affine approximation to d𝑃

d𝑡  that is a good approximation when 𝑃 ≈ 1
2 . Find

a formula for 𝐴1
2
(𝑃 ).

58.5 Find additional affine approximations to d𝑃
d𝑡  centered at each equilibrium solution.



59 Based on our calculations from Core Exercise 58, we have several different affine approximations.

(Original) 𝑃 ′ = 𝑃(1 − 𝑃
2 ) (https://www.desmos.com/calculator/v1coz4shtw)

(𝐴{1
2}) 𝑃 ′ ≈ 3

8 + 1
2(𝑃 − 1

2) (https://www.desmos.com/calculator/zsb2apxhqs)

(𝐴0) 𝑃 ′ ≈ 𝑃 (https://www.desmos.com/calculator/vw48bvqgrc)

(𝐴2) 𝑃 ′ ≈ −(𝑃 − 2) (https://www.desmos.com/calculator/i2utk6vnqh)

59.1 What are the similarities/differences in the Desmos plots of solutions to the original equation
vs. the other equations?

59.2 Does the nature of the equilibrium solutions change when using an affine approximation?

59.3 Classify each equilibrium solution of the original equation by using affine approximations.

https://www.desmos.com/calculator/v1coz4shtw
https://www.desmos.com/calculator/zsb2apxhqs
https://www.desmos.com/calculator/vw48bvqgrc
https://www.desmos.com/calculator/i2utk6vnqh


60 Consider the differential equation whose slope field is sketched below.

𝑃 ′(𝑡) = −𝑃(𝑡) ⋅ (0.1 + 𝑃(𝑡)) ⋅ (0.2 + 𝑃(𝑡))

= −(𝑃(𝑡))3 − 0.3 ⋅ (𝑃 (𝑡))2 − 0.02 ⋅ 𝑃 (𝑡)

https://www.desmos.com/calculator/ikp9rgo0kv

−1

0

1

60.1 Find all equilibrium solutions.

60.2 Use affine approximations to classify the equilibrium solutions as stable/unstable/etc.

https://www.desmos.com/calculator/ikp9rgo0kv


61 To make a 1d affine approximation of a function 𝑓  at the point 𝐸 we have the formula

𝑓(𝑥) ≈ 𝑓(𝐸) + 𝑓 ′(𝐸)(𝑥 − 𝐸).

To make a 2d approximation of a function ⃗𝐹 (𝑥, 𝑦) = (𝐹1(𝑥, 𝑦), 𝐹2(𝑥, 𝑦)) at the point ⃗𝐸, we have a
similar formula

⃗𝐹 (𝑥, 𝑦) ≈ ⃗𝐹( ⃗𝐸) + 𝐷 ⃗𝐹 ( ⃗𝐸)([𝑥
𝑦] − ⃗𝐸)

where 𝐷 ⃗𝐹 ( ⃗𝐸) is the total derivative of ⃗𝐹  at ⃗𝐸, which can be expressed as the matrix

𝐷 ⃗𝐹 ( ⃗𝐸) =
[
[
[

𝜕𝐹1
𝜕𝑥
𝜕𝐹2
𝜕𝑥

𝜕𝐹1
𝜕𝑦
𝜕𝐹2
𝜕𝑦 ]

]
]

evaluated at ⃗𝐸.

Recall our model from Exercise Core Exercise 28 for the life cycle of a tree where 𝐻(𝑡) was height,
𝐴(𝑡) was the leaves’ surface area, and 𝑡 was time:

𝐻′(𝑡) = 0.3 ⋅ 𝐴(𝑡) − 𝑏 ⋅ 𝐻(𝑡)

𝐴′(𝑡) = −0.3 ⋅ (𝐻(𝑡))2 + 𝐴(𝑡)

with 0 ≤ 𝑏 ≤ 2

We know the following:
• The equations cannot be written in matrix form.

• The equilibrium points are (0, 0) and (100
9 𝑏, 1000

27 𝑏2).

We want to find an affine approximation to the system.

Define ⃗𝐹 (𝐻, 𝐴) = (𝐻′, 𝐴′)

61.1 Find the matrix for 𝐷 ⃗𝐹 , the total derivative of ⃗𝐹 .

61.2 Create an affine approximation to ⃗𝐹  around ⃗𝑒 = (0, 0) and use this to write an approximation
to the original system.

61.3 In the original system, the equilibrium (0, 0) is unstable and not repelling. Justify this using
your affine approximation.

61.4 Create an affine approximation to ⃗𝐹  around ⃗𝑒 = (100
9 𝑏, 1000

27 𝑏2) and use this to write an
approximation to the original system.

61.5 Make a phase portrait for the original system and your approximation from part 61.4. How
do they compare?

61.6 Analyze the nature of the equilibrium solution in part 61.4 using eigen techniques. Relate
your analysis to the original system.



62 Define ⃗𝐹 (𝑥, 𝑦) = [ 𝑦
−𝑥𝑦+𝑥2−𝑥−𝑦] and consider the differential equation

[𝑥′

𝑦′] = ⃗𝐹 (𝑥, 𝑦).

62.1 Make a phase portrait for this differential equation. Based on your phase portrait, can you
determine the nature of the equilibrium at (0, 0)?

https://www.desmos.com/calculator/peby3xd7jj

62.2 Find an affine approximation to ⃗𝐹  centered at (0, 0).
62.3 Write down a differential equation that approximates the original equation near (0, 0).
62.4 Analyze the nature of the equilibrium solution ⃗𝑟(𝑡) = (0, 0) using eigen techniques. (You may

use a computer to assist in eigen computations.) Relate your analysis to the original system.

https://www.desmos.com/calculator/peby3xd7jj
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Higher Order Differential Equations
In this module you will learn
•How to use transform a higher order differential equation into a first order system of

differential equations
•How to analyze the stability of a higher order differential equation using eigenvalues and

eigenvectors
•How to approximate solutions to higher order differential equations using numerical

methods

Order of a differential equation

Order of a Differential Equation. A differential equation is said to be order 𝑛 if the highest
derivative that appears in the differential equation is the 𝑛th derivative.

Up to this module, we only studied first order differential equations (and systems).

In this module, we are going to study higher order differential equations, which are differential
equations that involve derivatives of order greater than one.

Transforming a higher order differential equation into a first order system of differential
equations
When studying a higher order differential equation, we can rewrite it as an equivalent system of
first order differential equations by introducing an auxiliary variable for each of the derivatives
(except the highest one).

Example. Write the third order differential equation

𝑢‴(𝑥) − tan(𝑢″(𝑥)) + 3√1 + (𝑢′(𝑥))2 + sin(𝑢″(𝑥)) · 𝑢(𝑥) = 𝑒𝑥

as a system of first order differential equations.

We introduce a new variable for each derivative (except the highest one):
•𝑣(𝑥) = 𝑢′(𝑥);
•𝑤(𝑥) = 𝑣′(𝑥), and notice that 𝑤(𝑥) = 𝑢″(𝑥), so 𝑤′(𝑥) = 𝑢‴(𝑥).

We can then write the differential equation using these variables and their derivatives of
order at most one:

𝑤′ − tan(𝑤) + 3√1 + 𝑣2 + sin(𝑤) · 𝑢 = 𝑒𝑥

Thus the original third order differential equation is equivalent to

{{
{
{{𝑢′ = 𝑣

𝑣′ = 𝑤
𝑤′ = tan(𝑤) − 3

√
1 + 𝑣2 − sin(𝑤) · 𝑢 + 𝑒𝑥

This means that all the machinery that we developed in the previous modules for systems of
differential equations applies directly to higher-order differential equations.

Equilibrium solutions for higher order differential equations
The definition of equilibrium solution remains the same, which means that an equilibrium
solution will satisfy
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𝑢(𝑥) ≡ 𝐶
𝑢′(𝑥) ≡ 0
𝑢″(𝑥) ≡ 0

⋮

for some constant 𝐶.

So when we transform a higher order differential equation into a system, the equilibrium
becomes a vector with a very specific form

⃗𝑟 =

[
[
[
[
[𝐶

0
0
⋮ ]
]
]
]
]

Stability of equilibrium solutions of a higher order differential equation
Recall the definitions introduced in Module 4.

To study the stability, we transform the equation into a system and study its eigenvalues
according to the table at the end of Module 8.

Example. What is the stability of the equilibrium solutions of the differential equation
𝑢″(𝑥) = −𝑢(𝑥)?

The first step is to find the equilibrium solution which has zero derivatives, so it satisfies

0 = −𝑢

and so it has one equilibrium solution 𝑢(𝑥) = 0.

The second step is to introduce an auxiliary variable
•𝑣(𝑥) = 𝑢′(𝑥)

We can then write the differential equation as

{𝑢′ = 𝑣
𝑣′ = −𝑢

We introduce a new variable ⃗𝑟(𝑥) = [𝑢(𝑥)
𝑣(𝑥)], and we can write the differential equation as a

system in matrix form

⃗𝑟′ = [ 0
−1

1
0] ⃗𝑟

This matrix has the eigenvalues ±𝑖, so we know that the equilibrium solution ⃗𝑟 = 0 is stable
but not attracting nor repelling.

Because the system is equivalent to the original differential equation, we can conclude that
the equilibrium solution 𝑢 = 0 is also stable but neither attracting nor repelling.

Linearization of higher order differential equations
The linearization of a higher order differential equation is done in the same way as for first
order differential equations, by transforming it into a system and then linearizing the system.

It is important to re-write the differential equation as a system of first order differential
equations before linearizing it. It is easy to make mistakes if we try to linearize a higher order
differential equation directly.
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Numerical methods for higher order differential equations
Similarly to the study of the stability, we first transform the differential equation to its equiv-
alent system of first order different equations, and then we can apply any numerical method,
like Euler’s Method introduced in Module 2 to simulate its solutions.

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Module 10
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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63 Consider a spring with a mass attached to the end.

M

Let 𝑥(𝑡) = displacement to the right of the spring from equilibrium at time 𝑡.

Recall from Physics the following laws:

• (HL) Hooke’s Law: For an elastic spring, force is proportional to negative the displacement
from equilibrium.

• (NL) Newton’s Second Law: Force is proportional to acceleration (the proportionality con-
stant is called mass).

• (ML) Laws of Motion: Velocity is the time derivative of displacement and acceleration is the
time derivative of velocity.

63.1 Model 𝑥(𝑡) with a differential equation.

For the remaining parts, assume the elasticity of the spring is 𝑘 = 1 and the mass is 1.

63.2 Suppose the spring is stretched 0.5m from equilibrium and then let go (at time 𝑡 = 0).
(a) At 𝑡 = 0, what are 𝑥, 𝑥′, and 𝑥″?

(b) Modify Euler’s method to approximate a solution to the initial value problem.

63.3 Introduce the auxiliary equation 𝑦 = 𝑥′. Can the second-order spring equation be rewritten
as a first-order system involving 𝑥′ and 𝑦′? If so, do it.

63.4 Simulate the system you found in the previous part using Euler’s method.



64 Recall a spring with a mass attached to the end.

M

𝑥(𝑡) = displacement to the right of the spring from equilibrium at time 𝑡

We have two competing models

𝑥″ = −𝑘𝑥 (N)

[𝑥
𝑦]

′

= [ 0
−𝑘

1
0][𝑥

𝑦] (O)

where 𝑦 = 𝑥′

XXX CHANGE EQUATION LABELS TO (A) AND (B) IN THE BOOK VERSION

64.1 Make a phase portrait for system (O). What are the axes on the phase portrait? What do you
expect general solutions to look like?

64.2 Use eigenvalues/eigenvectors to find a general solution to (O). (You may use a computer to
compute eigenvalues/vectors.)

64.3 Use your solution to (O) to find a general solution to (N).



65 Consider the second-order differential equation

𝑥″ = −(1 + 𝑥) ⋅ 𝑥′ + 𝑥2 − 𝑥

65.1 Rewrite the second-order differential equation as a system of first-order differential equations.
(Hint: you may need to introduce an auxiliary equation.)

65.2 The following Desmos link plots a phase portrait and draws an Euler approximation on the
phase portrait:

https://www.desmos.com/calculator/fvqxqp6eds

Use the link to make a phase portrait for your system and answer the following questions:
(a) Are there initial conditions with 𝑥(0) < 0 so that a solution 𝑥(𝑡) is always increasing?

(b) Are there initial conditions with 𝑥(0) < 0 so that a solution 𝑥(𝑡) first decreases and then
increases?

65.3 Show that 𝑥(𝑡) = 0 is an equilibrium solution for this equation.

65.4 Use linearization and eigenvalues to classify the equilibrium (𝑥, 𝑥′) = (0, 0) in phase space.

65.5 Let 𝑥(𝑡) be a solution to the original equation and suppose 𝑥(0) = 𝛿1 ≈ 0.
(a) If 𝑥′(0) = 𝛿2 ≈ 0, speculate on the long term behaviour of 𝑥(𝑡).
(b) If we put no conditions on 𝑥′(0) will your answer be the same? Explain.

https://www.desmos.com/calculator/fvqxqp6eds
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Introduction to Boundary Value Problems
In this module you will learn
•What is a boundary value problem
•How to solve a boundary value problem
•How to approximate the solutions of a boundary value problem

What is a boundary value problem?
Until now, we always studied differential equations with some initial conditions: conditions
given all for the same value of the dependent variable. These are called initial value problems.

Boundary value problems are composed by one or more differential equation and a set of
conditions given at different values of the dependent variable.

Example.  Consider the differential equation 𝑢″(𝑥) = −𝑢(𝑥) with the conditions below.
Which of these are initial value problems and which are boundary value problems?

1. 𝑢(0) = 0, 𝑢′(0) = −1 is an initial value problem, because all the conditions are given for
the same value of 𝑥, namely 𝑥 = 0.

2. 𝑢′(100) = −2, 𝑢″(100) = 3 is also an initial value problem, with the conditions given for
the value 𝑥 = 100.

3. 𝑢(1) = 0, 𝑢′(2) = 0 is a boundary value problem, because the conditions are given for
different values of 𝑥: one condition at 𝑥 = 1 and the other at 𝑥 = 2.

Solving a boundary value problem
Typically a boundary value problem is higher order, since for first order diffferential equations
we only need one condition.

So the first step is usually to transform it into a system of differential equations. Then we can
solve it using the methods outlined in previous modules.

Once we have a general solution, we find the arbitrary constants using the conditions. It is
exactly the same process as the one to solve an initial value problem.

Existence and Uniqueness of solution
The Theorem introduced in Module 6 doesn’t apply to this type of conditions. In fact, there is
no general Theorem of Existence and Uniqueness of solutions for boundary value problems.

Simulating solutions using the shooting method
Euler’s method requires a full set of initial conditions to start and simulate the solution of a
differential equation, so it doesn’t apply to a boundary value problem.

Instead, we need to modify it into what is known as a shooting method.

The idea of the shooting method is the following:
1. Start with the boundary condition for the smallest value of 𝑥 = 𝑥0.
2. Introduce parameters ⃗𝜉 for the remaining componentsnecessary to complete an initial

condition at 𝑥 = 𝑥0.
3. Start with some value ⃗𝜉0, e.g. ⃗𝜉0 = ⃗0 and use Euler’s method to simulate the solution until

it reaches the other coundary condition at 𝑥1.
4. Adjust the value of the parameter ⃗𝜉 and simulate again.
5. Repeat until you find a solution that satisfies the boundary condition at 𝑥1 or comes very

close to it.

133



M
od

ul
e 

11
 —

 In
tro

du
ct

io
n 

to
 B

ou
nd

ar
y 

Va
lu

e 
Pr

ob
le

m
s

Example. Simulate the solution of the boundary value problem

{{
{
{{𝑢″ = −2𝑢′ − 2𝑢

𝑢(0) = 1
𝑢(1) = 1

We first write this differential equation as a system

⃗𝑟′ = [ 0
−2

1
−2] ⃗𝑟.

Our boundary condition at 𝑥 = 0, gives us the first component of an initial condition. To be
able to simulate the solution, we need to introduce a parameter for the second component
of the vector ⃗𝑟, so we write:

⃗𝑟(0) = [1
𝜉]

Let us start with 𝑥𝑖 = 0. We can use Euler’s method to simulate the solution of the system
with ℎ = 0.01 and obtain

⃗𝑟(1) ≈ [ 0.507
−0.623]

This means that the approximation of the solution at 𝑥 = 1 is 𝑢(1) ≈ 0.507.

Observe that we really only care about the first component of the vector ⃗𝑟(𝑥), which is the
solution 𝑢(𝑥) of the original differential equation.

Here is a table of the successive applications of the Euler’s Method with different initial
conditions and how close the solution is to the boundary condition at 𝑥 = 1:

𝜉 𝑢(1)
0 0.507
1 0.818
2 1.130

1.5 0.974
1.75 1.052
1.625 1.013
1.5625 0.994

To adjust the value of 𝜉, we started with an initial guess of 𝜉 = 0 and increased it until we
obtained two values of 𝑢(1) that are on either side of the boundary condition 𝑢(1) = 1. In
this case, we found that 𝑢(1) < 1 for 𝜉 = 1 and 𝑢(1) > 1 for 𝜉 = 2. That means that the value
of 𝜉 we are looking for is between 1 and 2, so we successively bisected the interval [1, 2] to
find a better approximation of 𝜉.

There are lots of different methods to adjust the value of 𝜉 to get closer to the boundary
condition at 𝑥 = 1. Here we just used a simple bisection method, but you can use any method
you like.

We can see that the value of 𝑢(1) is getting closer to the boundary condition 𝑢(1) = 1 as we
adjust the value of 𝜉.
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Once we are happy with the approximation, we can sketch the solution we found. Below is
the grpah for the simulation with 𝜉 = 1.5625.

0.0 0.2 0.4 0.6 0.8 1.0
1.00
1.05
1.10
1.15
1.20
1.25
1.30

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Module 11
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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66 Recall the spring-mass system modeled by

𝑥″ = −𝑥

We would like to use the spring-mass system to ring a bell at regular intervals, so we put a
hammer at the end of the spring. Whenever the displacement is maximal, the hammer strikes a
bell producing a ring.

66.1 Convert the spring-mass system into a system of differential equations. Make a phase portrait
for the system using the following Desmos link:

https://www.desmos.com/calculator/fvqxqp6eds

66.2 In the Options Euler on Desmos, adjust Δ and the number of steps so that simulated solutions
are only shown for 𝑡 ∈ [0, 1].

Use simulations to answer the remaining questions.

66.3 You start by displacing the hammer by 1m and letting go. Is it possible that the bell rings
every 1 second?

66.4 You start by displacing the hammer by 1m and giving the hammer a push. Is it possible that
the bell rings every 1 second?

66.5 What is the smallest amount of time between consecutive rings (given a positive displace-
ment)?

https://www.desmos.com/calculator/fvqxqp6eds


67 Recall the spring-mass system modeled by

𝑥″ = −𝑥

We would like to use the spring-mass system to ring a bell at regular intervals, so we put a
hammer at the end of the spring. Whenever the displacement is maximal, the hammer strikes a
bell producing a ring.

Consider the subspaces

𝑆1 = span{sin(𝑡), cos(𝑡)} 𝑆2 = {𝐴 cos(𝑡 + 𝑑) : 𝐴, 𝑑 ∈ ℝ}

67.1 What dimension is each subspace?

67.2 Which subspaces are sets of solutions to the spring-mass system?

67.3 Use what you know about complete solutions and linear algebra to prove 𝑆1 = 𝑆2.

Use your knowledge about 𝑆1 and 𝑆2 to analytically answer the remaining questions.

67.4 You start by displacing the hammer by 1m and letting go. Is it possible that the bell rings
every 1 second?

67.5 You start by displacing the hammer by 1m and giving the hammer a push. Is it possible that
the bell rings every 1 second?

67.6 What is the smallest amount of time between consecutive rings (given a positive displace-
ment)?



68 A boundary value problem is a differential equation paired with two conditions at different values
of 𝑡.

Consider the following boundary value problems:

(i) (ii) (iii)

𝑥″ = −𝑥 𝑥″ = −𝑥 𝑥″ = −𝑥
𝑥(0) = 1 𝑥(0) = 1 𝑥(0) = 1
𝑥(𝜋) = 1 𝑥(𝜋) = −1 𝑥(𝜋

2 ) = 0

68.1 Using phase portraits and simulations, determine how many solutions each boundary value
problem has.

68.2 Can you find analytic arguments to justify your conclusions?
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Introduction to the Theory of Ordinary Differential Equations
This appendix is adapted from Jiri Lebl’s book “Notes on Diffy Qs”.

We wish to ask two fundamental questions about the problem

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0.

•Does a solution exist?
•Is the solution unique (if it exists)?

What do you think is the answer? The answer seems to be yes to both, does it not? Well, pretty
much. But there are cases when the answer to either question can be no.

Since generally the equations we encounter in applications come from real life situations, it
seems logical that a solution always exists. It also has to be unique if we believe our universe is
deterministic. If the solution does not exist, or if it is not unique, we have probably not devised
the correct model. Hence, it is good to know when things go wrong and why.

Example.  Attempt to solve:

𝑦′ = 1
𝑥

, 𝑦(0) = 0.

Integrate to find the general solution 𝑦 = ln|𝑥| + 𝐶. The solution does not exist at 𝑥 = 0.
See the figure below with teh slope field for this differential equation and some solutions.

0 1 2 3

−3

−2

−1

0

1

2

3

Observe how the slopes get more and more vertical as 𝑥 approaches 0.

Moreover, the equation may have been written as the seemingly harmless 𝑥𝑦′ = 1.

Example.  Solve:

𝑦′ = 2√|𝑦|, 𝑦(0) = 0.

See the figure below with the slope field for this differential equation and some solutions.
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0 1 2 3

−3

−2

−1

0

1

2

3

Note that 𝑦 = 0 is a solution. But another solution is the function

𝑦(𝑥) = {𝑥2  if 𝑥 ≥ 0
−𝑥2  if 𝑥 < 0

It is hard to tell by staring at the slope field that the solution is not unique. Is there any hope?
Of course there is. We have the following theorem, known as Picard’s theorem

Theorem (Picard’s theorem on existence and uniqueness)

If 𝑓(𝑥, 𝑦) is continuous (as a function of two variables) and 𝜕𝑓
𝜕𝑦  exists and is continuous near

some (𝑥0, 𝑦0), then a solution to

𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0,

exists (at least for 𝑥 in some small interval) and is unique.

Note that the problems 𝑦′ = 1
𝑥 , 𝑦(0) = 0 and 𝑦′ = 2√|𝑦|, 𝑦(0) = 0 do not satisfy the hypothesis

of the theorem. Even if we can use the theorem, we ought to be careful about this existence
business. It is quite possible that the solution only exists for a short while.

Example.  For some constant 𝐴, solve:

𝑦′ = 𝑦2, 𝑦(0) = 𝐴.

We know how to solve this equation. First assume that 𝐴 ≠ 0, so 𝑦 is not equal to zero at
least for some 𝑥 near 0. So 𝑥′ = 1

𝑦2 , so 𝑥 = −1
𝑦 + 𝐶, so 𝑦 = 1

𝐶−𝑥 . If 𝑦(0) = 𝐴, then 𝐶 = 1
𝐴  so

𝑦 = 1
1
𝐴 − 𝑥

.

If 𝐴 = 0, then 𝑦 = 0 is a solution.

For example, when 𝐴 = 1 the solution “blows up” at 𝑥 = 1. Hence, the solution does not
exist for all 𝑥 even if the equation is nice everywhere. The equation 𝑦′ = 𝑦2 certainly looks
nice.

For most of this course we will be interested in equations where existence and uniqueness
holds, and in fact holds “globally” unlike for the equation 𝑦′ = 𝑦2.
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Practice Problems
1. Sketch slope field for 𝑦′ = 𝑒𝑥−𝑦. How

do the solutions behave as 𝑥 grows?
Can you guess a particular solution by
looking at the slope field?

2. Sketch slope field for 𝑦′ = 𝑥2.
3. Sketch slope field for 𝑦′ = 𝑦2.
4. Is it possible to solve the equation 𝑦′ =

𝑥𝑦
cos 𝑥  for 𝑦(0) = 1? Justify.

5. Is it possible to solve the equation
𝑦′ = 𝑦√|𝑥| for 𝑦(0) = 0? Is the solution
unique? Justify.

6. Match equations 𝑦′ = 1 − 𝑥, 𝑦′ = 𝑥 −
2𝑦, 𝑦′ = 𝑥(1 − 𝑦) to slope fields. Justify.

XXXX ADD SLOPE FIELDS
7. (Challenging) Take 𝑦′ = 𝑓(𝑥, 𝑦), 𝑦(0) =

0, where 𝑓(𝑥, 𝑦) > 1 for all 𝑥 and 𝑦. If
the solution exists for all 𝑥, can you
say what happens to 𝑦(𝑥) as 𝑥 goes to
positive infinity? Explain.

8. (Challenging) Take (𝑦 − 𝑥)𝑦′ = 0,
𝑦(0) = 0.
(a) Find two distinct solutions.
(b) Explain why this does not violate

Picard’s theorem.
9. Suppose 𝑦′ = 𝑓(𝑥, 𝑦). What will the

slope field look like, explain and sketch
an example, if you know the following
about 𝑓(𝑥, 𝑦):
(a) 𝑓  does not depend on 𝑦.
(b) 𝑓  does not depend on 𝑥.
(c) 𝑓(𝑡, 𝑡) = 0 for any number 𝑡.
(d) 𝑓(𝑥, 0) = 0 and 𝑓(𝑥, 1) = 1 for all

𝑥.
10. Find a solution to 𝑦′ = |𝑦|, 𝑦(0) = 0.

Does Picard’s theorem apply?
11. Take an equation 𝑦′ = (𝑦 − 2𝑥)𝑔(𝑥, 𝑦) +

2 for some function 𝑔(𝑥, 𝑦). Can you
solve the problem for the initial condi-
tion 𝑦(0) = 0, and if so what is the
solution?

12. Suppose 𝑦′ = 𝑓(𝑥, 𝑦) is such that
𝑓(𝑥, 1) = 0 for every 𝑥, 𝑓  is continuous
and 𝜕𝑓

𝜕𝑦  exists and is continuous for
every 𝑥 and 𝑦.
(a) Guess a solution given the initial

condition 𝑦(0) = 1.

(b) Can graphs of two solutions of the
equation for different initial condi-
tions ever intersect?

(c) Given 𝑦(0) = 0, what can you say
about the solution. In particular,
can 𝑦(𝑥) > 1 for any 𝑥? Can 𝑦(𝑥) =
1 for any 𝑥? Why or why not?

13. Sketch the slope field of 𝑦′ = 𝑦3. Can
you visually find the solution that satis-
fies 𝑦(0) = 0?

14. Is it possible to solve 𝑦′ = 𝑥𝑦 for 𝑦(0) =
0? Is the solution unique?

15. Is it possible to solve 𝑦′ = 𝑥
𝑥2−1  for

𝑦(1) = 0?
16.
17. Match equations 𝑦′ = sin 𝑥, 𝑦′ = cos 𝑦,

𝑦′ = 𝑦 cos(𝑥) to slope fields. Justify. XXX
ADD SLOPE FIELDS

18. Suppose

𝑓(𝑦) = {0  if 𝑦 > 0
1  if 𝑦 ≤ 0

Does 𝑦′ = 𝑓(𝑦), 𝑦(0) = 0 have a con-
tinuously differentiable solution? Does
Picard apply? Why, or why not?

19. Consider an equation of the form 𝑦′ =
𝑓(𝑥) for some continuous function 𝑓 ,
and an initial condition 𝑦(𝑥0) = 𝑦0.
Does a solution exist for all 𝑥? Why or
why not?
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Solutions for Module 12
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14. Yes a solution exists. The equation

is 𝑦′ = 𝑓(𝑥, 𝑦) where 𝑓(𝑥, 𝑦) = 𝑥𝑦. The
function 𝑓(𝑥, 𝑦) is continuous and 𝜕𝑓

𝜕𝑦 =
𝑥, which is also continuous near (0, 0).
So a solution exists and is unique. (In
fact, 𝑦 = 0 is the solution.)

15. No, the equation is not defined at
(𝑥, 𝑦) = (1, 0).

16. The answer to the second question.
17. (a) 𝑦′ = cos 𝑦

(b) 𝑦′ = 𝑦 cos(𝑥)
(c) 𝑦′ = sin 𝑥.

Justification left to reader.
18. Picard does not apply as 𝑓  is not contin-

uous at 𝑦 = 0. The equation does not
have a continuously differentiable solu-
tion. Suppose it did. Notice that 𝑦′(0) =
1. By the first derivative test, 𝑦(𝑥) > 0
for small positive 𝑥. But then for those
𝑥, we have 𝑦′(𝑥) = 𝑓(𝑦(𝑥)) = 0. It is not
possible for 𝑦′ to be continous, 𝑦′(0) = 1
and 𝑦′(𝑥) = 0 for arbitrarily small posi-
tive 𝑥.

19. The solution is 𝑦(𝑥) = ∫𝑥
𝑥0

𝑓(𝑠)𝑑𝑠 + 𝑦0,

and this does indeed exist for every 𝑥.
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69 Whether a solution to a differential equation exists or is unique is a hard question with many partial
answers.

Recall the Theorem:

Theorem (Existence and Uniqueness II)

Let 𝐹(𝑡, 𝑥, 𝑥′) = 0 with 𝑥(𝑡0) = 𝑥0 describe an initial value problem.

• IF 𝐹(𝑡, 𝑥, 𝑥′) = 𝑥′(𝑡) + 𝑝(𝑡)𝑥(𝑡) + 𝑔(𝑡) for some functions 𝑝 and 𝑔
• AND 𝑝 and 𝑔 are continuous on an open interval 𝐼  containing 𝑡0
• THEN the initial value problem has a unique solution on 𝐼 .

69.1 The theorem expresses differential equations in the form 𝐹(𝑡, 𝑥, 𝑥′, 𝑥″, …) = 0 (i.e. as a level
set of some function 𝐹 ).

Rewrite the following differential equations in the form 𝐹(𝑡, 𝑥, 𝑥′, 𝑥″, …) = 0:
(a) 𝑥″ = −𝑘𝑥
(b) 𝑥″ = −𝑥 ⋅ 𝑥′ + 𝑥2

(c) 𝑥‴ = (𝑥′)2 − cos 𝑥
69.2 Which of the following does the theorem say must have a unique solution on an interval

containing 0?
(a) 𝑦′ = 3

2𝑦1
3  with 𝑦(0) = 0

(b) 𝑥′(𝑡) = ⌊𝑡⌋𝑥(𝑡) with 𝑥(0) = 0
(c) 𝑥′(𝑡) = ⌊𝑡 − 1

2⌋𝑥(𝑡) + 𝑡2 with 𝑥(0) = 0

Note: ⌊𝑥⌋ is the floor of 𝑥, i.e., the largest integer less than or equal to 𝑥.
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Spreadsheets and Programming
In this appendix you will learn:
•The basics of spreadsheet usage
•How to set up formulas in spreadsheets

Spreadsheets serve as a powerful data analysis and management tool. Commonly associated
with Microsoft Excel, spreadsheets provide an interactive table that, for us, is ideal for imple-
menting some of the basic algorithms for simulating solutions to differential equations.

Spreadsheet Basics
The interface to a spreadsheet is a table of editable cells. Every column of the spreadsheet is
indexed by a capital letter (A, B, C, …, Z, AA, AB, …, with the column names turning to double
letters after Z), and the rows indexed by numbers, starting at 1.

Cell “B2” Cell “E2”

Cell “A4”

1
2
3
4
5

A B C D E

Text or numbers can be entered into any cell of a spreadsheet.

Formulas
If a cell’s contents start with an equals sign =, what follows will be interpreted as a formula.
Formulas can include math expressions (+, -, *, /) as well as references to other cells.

For example, when the following spreadsheet is evaluated, the contents of B2 will be 9 and the
contents of C2 will be 10.

4.5
=A1*2 =B2+1

1
2
3
4
5

A B C

→

4.5
9 10

1
2
3
4
5

A B C

Formulas can be interpolated when copy/pasted or extended to other cells. In the following
example, the formula =A1+1 is being interpolated to “add one to the previous cell”.

4.5
=A1+1

1
2
3
4
5

A

D
ra

g 
do

w
n

→

4.5
=A1+1

=A2+1

=A3+1

=A4+1

1
2
3
4
5

A

→

4.5
5.5
6.5
7.5
8.5

1
2
3
4
5

A

Preventing Interpolation
What if you don’t want interpolation? Or you only want it in particular places? For example,
instead of adding 1 to the previous cell, let us add the value of A2 to the previous cell.
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We can prevent interpolation of a row/column/both by adding a “$” before the row/column
in a cell index. For example,
•=A$1 would interpolate the column but not the row,
•=$A1 would interpolate the row but not the column, and
•=$A$1 would not interpolate either.

Delta
0.05

t
0

=B2+$A$2

1
2
3
4
5

A B

D
ra

g 
do

w
n →

Delta
0.05

t
0

=B2+$A$2

=B3+$A$2

=B4+$A$2

1
2
3
4
5

A B

→

Delta
0.05

t
0

0.05
0.10
0.15

1
2
3
4
5

A B

Pitfalls of Formulas
XXX Finish (some stuff about order of operations, ### showing up in a cell, etc.)

Graphing
XXX Finish

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Appendix A
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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Separable Equations
This appendix is adapted from Jiri Lebl’s book “Notes on Diffy Qs”.

When a differential equation is of the form 𝑦′ = 𝑓(𝑥), we integrate: 𝑦 = ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶. Unfor-
tunately, simply integrating no longer works for the general form of the equation 𝑦′ = 𝑓(𝑥, 𝑦).
Integrating both sides yields the rather unhelpful expression

𝑦(𝑥) = ∫ 𝑓(𝑥, 𝑦(𝑥))𝑑𝑥 + 𝐶.

Notice the dependence on 𝑦 in the integral.

Separable equations
We say a differential equation is separable if we can write it as

𝑦′ = 𝑓(𝑥)𝑔(𝑦),

for some functions 𝑓(𝑥) and 𝑔(𝑦). Let us write the equation in the Leibniz notation

𝑑𝑦
𝑑𝑥

= 𝑓(𝑥)𝑔(𝑦).

Then we rewrite the equation as

𝑑𝑦
𝑔(𝑦)

= 𝑓(𝑥)𝑑𝑥.

Both sides look like something we can integrate. We obtain

∫ 𝑑𝑦
𝑔(𝑦)

= ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶.

If we can find closed form expressions for these two integrals, we can, perhaps, solve for 𝑦.

Example.  Take the equation

𝑦′ = 𝑥𝑦.

Find the general solution.

Note that 𝑦 = 0 is a solution. We will remember that fact and assume 𝑦 ≠ 0 from now on,
so that we can divide by 𝑦. Write the equation as 𝑑𝑦

𝑑𝑥 = 𝑥𝑦 or 𝑑𝑦
𝑦 = 𝑥𝑑𝑥. Then

∫ 𝑑𝑦
𝑦

= ∫ 𝑥𝑑𝑥 + 𝐶.

We compute the antiderivatives to get

ln|𝑦| = 𝑥2

2
+ 𝐶,

or

|𝑦| = 𝑒𝑥2
2 +𝐶 = 𝑒𝑥2

2 𝑒𝐶 = 𝐷𝑒𝑥2
2 ,

where 𝐷 > 0 is some constant. Because 𝑦 = 0 is also a solution and because of the absolute
value, we can write:

𝑦 = 𝐷𝑒𝑥2
2 ,
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for any number 𝐷 (including zero or negative).

We check:

𝑦′ = 𝐷𝑥𝑒𝑥2
2 = 𝑥(𝐷𝑒𝑥2

2 ) = 𝑥𝑦.

Yay!

You may be worried that we integrated in two different variables. We seemingly did a different
operation to each side. Perhaps we should be a little bit more careful and work through this
method more rigorously. Consider

𝑑𝑦
𝑑𝑥

= 𝑓(𝑥)𝑔(𝑦).

We rewrite the equation as follows. Note that 𝑦 = 𝑦(𝑥) is a function of 𝑥 and so is 𝑑𝑦
𝑑𝑥!

1
𝑔(𝑦)

𝑑𝑦
𝑑𝑥

= 𝑓(𝑥).

We integrate both sides with respect to 𝑥:

∫ 1
𝑔(𝑦)

𝑑𝑦
𝑑𝑥

𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶.

We use the change of variables formula (substitution) on the left hand side:

∫ 1
𝑔(𝑦)

𝑑𝑦 = ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶.

And we are done.

Implicit solutions
We sometimes get stuck even if we can do the integration. Consider the separable equation

𝑦′ = 𝑥𝑦
𝑦2 + 1

.

We separate variables,

(𝑦2 + 1
𝑦

)𝑑𝑦 = (𝑦 + 1
𝑦
)𝑑𝑦 = 𝑥𝑑𝑥.

We integrate to get

𝑦2

2
+ ln|𝑦| = 𝑥2

2
+ 𝐶,

or perhaps the less intimidating expression (where 𝐷 = 2𝐶)

𝑦2 + 2 ln|𝑦| = 𝑥2 + 𝐷.

It is not easy to find the solution explicitly—it is hard to solve for 𝑦. We, therefore, leave the
solution in this form and call it an implicit solution. It is still easy to check that an implicit
solution satisfies the differential equation. In this case, we differentiate with respect to 𝑥, and
remember that 𝑦 is a function of 𝑥, to get
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𝑦′(2𝑦 + 2
𝑦
) = 2𝑥.

Multiply both sides by 𝑦 and divide by 2(𝑦2 + 1) and you will get exactly the differential
equation. We leave this computation to the reader.

If you have an implicit solution, and you want to compute values for 𝑦, you might have to be
tricky. You might get multiple solutions 𝑦 for each 𝑥, so you have to pick one. Sometimes you
can graph 𝑥 as a function of 𝑦, and then turn your paper to see a graph. Sometimes you have
to do more.

Computers are also good at some of these tricks. More advanced mathematical software usually
has some way of plotting solutions to implicit equations. For example, for 𝐷 = 0, if you plot
all the points (𝑥, 𝑦) that are solutions to 𝑦2 + 2 ln|𝑦| = 𝑥2, you find the two curves in the figure
below.

−5 0 5

−4

−2

0

2

4

This is not quite a graph of a function. For each 𝑥 there are two choices of 𝑦. To find a function,
you have to pick one of these two curves. You pick the one that satisfies your initial condition
if you have one. For instance, the top curve satisfies the condition 𝑦(1) = 1. So for each 𝐷, we
really got two solutions. As you can see, computing values from an implicit solution can be
somewhat tricky. But sometimes, an implicit solution is the best we can do.

The equation above also has the solution 𝑦 = 0. So the general solution is

𝑦2 + 2 ln|𝑦| = 𝑥2 + 𝐷, and 𝑦 = 0.

Sometimes these extra solutions that came up due to division by zero such as 𝑦 = 0 are called
singular solutions.

Examples of separable equations

Example. 

Solve 𝑥2𝑦′ = 1 − 𝑥2 + 𝑦2 − 𝑥2𝑦2, 𝑦(1) = 0.

Factor the right-hand side

𝑥2𝑦′ = (1 − 𝑥2)(1 + 𝑦2).

Separate variables, integrate, and solve for 𝑦:
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𝑦′

1 + 𝑦2 = 1 − 𝑥2

𝑥2 ,

𝑦′

1 + 𝑦2 = 1
𝑥2 − 1,

arctan(𝑦) = −1
𝑥

− 𝑥 + 𝐶,

𝑦 = tan(−1
𝑥

− 𝑥 + 𝐶)

Solve for the initial condition, 0 = tan(−2 + 𝐶) to get 𝐶 = 2 (or 𝐶 = 2 + 𝜋, or 𝐶 = 2 + 2𝜋,
etc.). The particular solution we seek is, therefore,

𝑦 = tan((−1
𝑥

) − 𝑥 + 2).

Example. 

Bob made a cup of coffee, and Bob likes to drink coffee only once reaches 60 degrees Celsius
and will not burn him. Initially at time 𝑡 = 0 minutes, Bob measured the temperature and
the coffee was 89 degrees Celsius. One minute later, Bob measured the coffee again and
it had 85 degrees. The temperature of the room (the ambient temperature) is 22 degrees.
When should Bob start drinking?

Let 𝑇  be the temperature of the coffee in degrees Celsius, and let 𝐴 be the ambient (room)
temperature, also in degrees Celsius. Newton’s law of cooling states that the rate at which
the temperature of the coffee is changing is proportional to the difference between the
ambient temperature and the temperature of the coffee. That is,

𝑑𝑇
𝑑𝑡

= 𝑘(𝐴 − 𝑇),

for some positive constant 𝑘. For our setup 𝐴 = 22, 𝑇 (0) = 89, 𝑇 (1) = 85. We separate
variables and integrate (let 𝐶 and 𝐷 denote arbitrary constants):

( 1
𝑇 − 𝐴

)𝑑𝑇
𝑑𝑡

= −𝑘,

ln(𝑇 − 𝐴) = −𝑘𝑡 + 𝐶, note that 𝑇 − 𝐴 > 0,

𝑇 − 𝐴 = 𝐷𝑒−𝑘𝑡,
𝑇 = 𝐴 + 𝐷𝑒−𝑘𝑡

That is, 𝑇 = 22 + 𝐷𝑒−𝑘𝑡. We plug in the first condition: 89 = 𝑇(0) = 22 + 𝐷, and hence 𝐷 =
67. So 𝑇 = 22 + 67𝑒−𝑘𝑡. The second condition says 85 = 𝑇(1) = 22 + 67𝑒−𝑘. Solving for 𝑘,
we get 𝑘 = − ln(85−22

67 ) ≈ 0.0616. Now we solve for the time 𝑡 that gives us a temperature
of 60 degrees. Namely, we solve

60 = 22 + 67𝑒−0.0616𝑡

to get 𝑡 = − ln(60−22
67 )

0.0616 ≈ 9.21 minutes. So Bob can begin to drink the coffee at just over 9
minutes from the time Bob made it. That is probably about the amount of time it took us to
calculate how long it would take.
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Example.  Find the general solution to 𝑦′ = −𝑥𝑦2

3  (including any singular solutions).

First note that 𝑦 = 0 is a solution (a singular solution). Now assume that 𝑦¬ = 0.

− 3
𝑦2 𝑦′ = 𝑥,

3
𝑦

= 𝑥2

2
+ 𝐶,

𝑦 = 3
𝑥2

2 + 𝐶

= 6
𝑥2 + 2𝐶

So the general solution is

𝑦 = 6
𝑥2 + 2𝐶

and 𝑦 = 0.

Practice Problems
1. Solve 𝑦′ = 𝑥

𝑦 .
2. Solve 𝑦′ = 𝑥2𝑦.
3. Solve 𝑑𝑥

𝑑𝑡 = (𝑥2 − 1)𝑡, for 𝑥(0) = 0.
4. Solve 𝑑𝑥

𝑑𝑡 = 𝑥 sin(𝑡), for 𝑥(0) = 1.
5. Solve 𝑑𝑦

𝑑𝑥 = 𝑥𝑦 + 𝑥 + 𝑦 + 1. Hint: Factor
the right-hand side.

6. Solve 𝑥𝑦′ = 𝑦 + 2𝑥2𝑦, where 𝑦(1) = 1.
7. Solve 𝑑𝑦

𝑑𝑥 = 𝑦2+1
𝑥2+1 , for 𝑦(0) = 1.

8. Find an implicit solution for 𝑑𝑦
𝑑𝑥 = 𝑥2+1

𝑦2+1 ,
for 𝑦(0) = 1.

9. Find an explicit solution for 𝑦′ = 𝑥𝑒−𝑦,
𝑦(0) = 1.

10. Find an explicit solution for 𝑥𝑦′ = 𝑒−𝑦,
for 𝑦(1) = 1.

11. Find an explicit solution for 𝑦′ = 𝑦𝑒−𝑥2
,

𝑦(0) = 1. It is alright to leave a definite
integral in your answer.

12. Suppose a cup of coffee is at 100 de-
grees Celsius at time 𝑡 = 0, it is at 70
degrees at 𝑡 = 10 minutes, and it is at 50

degrees at 𝑡 = 20 minutes. Compute the
ambient temperature.

13. Solve 𝑦′ = 2𝑥𝑦.
14. Solve 𝑥′ = 3𝑥𝑡2 − 3𝑡2, 𝑥(0) = 2.
15. Find an implicit solution for 𝑥′ = 1

3𝑥2+1 ,
𝑥(0) = 1.

16. Find an explicit solution to 𝑥𝑦′ = 𝑦2,
𝑦(1) = 1.

17. Find an implicit solution to 𝑦′ = sin(𝑥)
cos(𝑦) .

18. Take the coffee example from page 150
with the same numbers: 89 degrees at
𝑡 = 0, 85 degrees at 𝑡 = 1, and ambient
temperature of 22 degrees. Suppose
these temperatures were measured with
precision of ±0.5 degrees. Given this
imprecision, the time it takes the coffee
to cool to (exactly) 60 degrees is also
only known in a certain range. Find this
range. Hint: Think about what kind of
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error makes the cooling time longer and
what shorter.

19. A population 𝑥 of rabbits on an island
is modeled by 𝑥′ = 𝑥 − ( 1

1000)𝑥
2, where

the independent variable is time in
months. At time 𝑡 = 0, there are 40 rab-
bits on the island.

(a) Find the solution to the equation
with the initial condition.

(b) How many rabbits are on the is-
land in 1 month, 5 months, 10
months, 15 months (round to the
nearest integer).

Solutions for Appendix B
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13. The solution is 𝑦 = 𝐶𝑒𝑥2

.
14. The solution is 𝑥 = 𝑒𝑡3 + 1.
15. The solution is 𝑥3 + 𝑥 = 𝑡 + 2.
16. The solution is 𝑦 = 1

1− ln(𝑥) .
17. The solution is sin(𝑦) = − cos(𝑥) + 𝐶.
18. The range is approximately 7.45 to

12.15 minutes.
19. (a) 𝑥 = 1000𝑒𝑡

𝑒𝑡+24 .
(b) 102 rabbits after one month, 861

after 5 months, 999 after 10
months, 1000 after 15 months.
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Integrating Factors
This appendix is adapted from Jiri Lebl’s book “Notes on Diffy Qs”.

One of the most important types of equations we will learn to solve are the so-called linear
equations. In fact, the majority of the course is about linear equations. In this section we focus
on the first order linear equation. A first order equation is linear if we can put it into the form:

𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥).

The word “linear” means linear in 𝑦 and 𝑦′; no higher powers nor functions of 𝑦 or 𝑦′ appear.
The dependence on 𝑥 can be more complicated.

Solutions of linear equations have nice properties. For example, the solution exists wherever
𝑝(𝑥) and 𝑓(𝑥) are defined, and has essentially the same regularity (read: it is just as nice). But
most importantly for us right now, there is a method for solving linear first order equations.

The trick is to rewrite the left-hand side of 𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥) as a derivative of a product of 𝑦
with another function. To this end, we find a function 𝑟(𝑥) such that

𝑟(𝑥)𝑦′ + 𝑟(𝑥)𝑝(𝑥)𝑦 = 𝑑
𝑑𝑥

[𝑟(𝑥)𝑦].

This is the left-hand side of 𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥) multiplied by 𝑟(𝑥). If we multiply 𝑦′ + 𝑝(𝑥)𝑦 =
𝑓(𝑥) by 𝑟(𝑥), we obtain

𝑑
𝑑𝑥

[𝑟(𝑥)𝑦] = 𝑟(𝑥)𝑓(𝑥).

We can now integrate both sides, which we can do as the right-hand side does not depend on
𝑦 and the left-hand side is written as a derivative of a function. After the integration, we solve
for 𝑦 by dividing by 𝑟(𝑥). The function 𝑟(𝑥) is called the integrating factor and the method is
called the integrating factor method.

We are looking for a function 𝑟(𝑥), such that if we differentiate it, we get the same function
back multiplied by 𝑝(𝑥). That seems like a job for the exponential function! Let

𝑟(𝑥) = 𝑒∫ 𝑝(𝑥)𝑑𝑥.

We compute:

𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥),

𝑒∫ 𝑝(𝑥)𝑑𝑥𝑦′ + 𝑒∫ 𝑝(𝑥)𝑑𝑥𝑝(𝑥)𝑦 = 𝑒∫ 𝑝(𝑥)𝑑𝑥𝑓(𝑥),
𝑑
𝑑𝑥

[𝑒∫ 𝑝(𝑥)𝑑𝑥𝑦] = 𝑒∫ 𝑝(𝑥)𝑑𝑥𝑓(𝑥),

𝑒∫ 𝑝(𝑥)𝑑𝑥𝑦 = ∫ 𝑒∫ 𝑝(𝑥)𝑑𝑥𝑓(𝑥)𝑑𝑥 + 𝐶,

𝑦 = 𝑒− ∫ 𝑝(𝑥)𝑑𝑥(∫ 𝑒∫ 𝑝(𝑥)𝑑𝑥𝑓(𝑥)𝑑𝑥 + 𝐶).

Of course, to get a closed form formula for 𝑦, we need to be able to find a closed form formula
for the integrals appearing above.

Example.  Solve

𝑦′ + 2𝑥𝑦 = 𝑒𝑥−𝑥2 , 𝑦(0) = −1.
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First note that 𝑝(𝑥) = 2𝑥 and 𝑓(𝑥) = 𝑒𝑥−𝑥2
. The integrating factor is 𝑟(𝑥) = 𝑒∫ 𝑝(𝑥)𝑑𝑥 = 𝑒𝑥2

.
We multiply both sides of the equation by 𝑟(𝑥) to get

𝑒𝑥2𝑦′ + 2𝑥𝑒𝑥2𝑦 = 𝑒𝑥−𝑥2𝑒𝑥2 ,
𝑑
𝑑𝑥

[𝑒𝑥2𝑦] = 𝑒𝑥.

We integrate

𝑒𝑥2𝑦 = 𝑒𝑥 + 𝐶,

𝑦 = 𝑒𝑥−𝑥2 + 𝐶𝑒−𝑥2 .

Next, we solve for the initial condition −1 = 𝑦(0) = 1 + 𝐶, so 𝐶 = −2. The solution is

𝑦 = 𝑒𝑥−𝑥2 − 2𝑒−𝑥2 .

Note that we do not care which antiderivative we take when computing 𝑒∫ 𝑝(𝑥)𝑑𝑥. You can
always add a constant of integration, but those constants will not matter in the end.

Exercise: Try it! Add a constant of integration to the integral in the integrating factor and show
that the solution you get in the end is the same as what we got above.

Advice: Do not try to remember the formula for 𝑦 itself, that is way too hard. It is easier to
remember the process and repeat it.

Since we cannot always evaluate the integrals in closed form, it is useful to know how to write
the solution in definite integral form. A definite integral is something that you can plug into a
computer or a calculator. Suppose we are given

𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥), 𝑦(𝑥0) = 𝑦0.

Look at the solution and write the integrals as definite integrals.

𝑦(𝑥) = 𝑒− ∫𝑥
𝑥0

𝑝(𝑠)𝑑𝑠(∫
𝑥

𝑥0

𝑒∫𝑡
𝑥0

𝑝(𝑠)𝑑𝑠𝑓(𝑡)𝑑𝑡 + 𝑦0).

You should be careful to properly use dummy variables here. If you now plug such a formula
into a computer or a calculator, it will be happy to give you numerical answers.

Exercise: Check that 𝑦(𝑥0) = 𝑦0 in formula above.

Exercise: Write the solution of the following problem as a definite integral, but try to simplify
as far as you can. You will not be able to find the solution in closed form.

𝑦′ + 𝑦 = 𝑒𝑥2−𝑥, 𝑦(0) = 10.

Remark: Before we move on, we should note some interesting properties of linear equations.
First, for the linear initial value problem 𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥), 𝑦(𝑥0) = 𝑦0, there is an explicit
formula above for the solution. Second, it follows from the formula above that if 𝑝(𝑥) and
𝑓(𝑥) are continuous on some interval (𝑎, 𝑏), then the solution 𝑦(𝑥) exists and is differentiable
on (𝑎, 𝑏). Compare with the simple nonlinear example we have seen previously, 𝑦′ = 𝑦2,
and compare to the Picard-Lindelöf Theorem (https://en.wikipedia.org/wiki/Picard-
Lindelof_theorem).
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Example.  Let us discuss a common simple application of linear equations. Real life
applications of this type of problem include figuring out the concentration of chemicals in
bodies of water (rivers and lakes).

XXX

A 100 litre tank contains 10 kilograms of salt dissolved in 60 litres of water. Solution of
water and salt (brine) with concentration of 0.1 kilograms per litre is flowing in at the rate
of 5 litres a minute. The solution in the tank is well stirred and flows out at a rate of 3 litres
a minute. How much salt is in the tank when the tank is full?

Let us come up with the equation. Let 𝑥 denote the kilograms of salt in the tank, let 𝑡
denote the time in minutes. For a small change Δ𝑡 in time, the change in 𝑥 (denoted Δ𝑥)
is approximately

Δ𝑥 ≈ (rate in ⋅ concentration in)Δ𝑡 − (rate out ⋅ concentration out)Δ𝑡.

Dividing through by Δ𝑡 and taking the limit Δ𝑡 → 0, we see that

𝑑𝑥
𝑑𝑡

= (rate in ⋅ concentration in) − (rate out ⋅ concentration out).

In our example,

rate in = 5,
concentration in = 0.1,

rate out = 3,

concentration out = 𝑥
volume

= 𝑥
60 + (5 − 3)𝑡

.

Our equation is, therefore,

𝑑𝑥
𝑑𝑡

= (5 ⋅ 0.1) − (3 𝑥
60 + 2𝑡

).

Or in the form 𝑦′ + 𝑝(𝑥)𝑦 = 𝑓(𝑥),

𝑑𝑥
𝑑𝑡

+ ( 3
60 + 2𝑡

)𝑥 = 0.5.

Let us solve. The integrating factor is

𝑟(𝑡) = exp(∫ 3
60 + 2𝑡

𝑑𝑡) = exp((3
2
) ln(60 + 2𝑡)) = (60 + 2𝑡)3

2 .

We multiply both sides of the equation to get

(60 + 2𝑡)3
2
𝑑𝑥
𝑑𝑡

+ (60 + 2𝑡)3
2 ( 3

60 + 2𝑡
)𝑥 = 0.5(60 + 2𝑡)3

2 ,

𝑑
𝑑𝑡

[(60 + 2𝑡)3
2 𝑥] = 0.5(60 + 2𝑡)3

2 ,

(60 + 2𝑡)3
2 𝑥 = ∫ 0.5(60 + 2𝑡)3

2 𝑑𝑡 + 𝐶,

So
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𝑥 = (60 + 2𝑡)−3
2 ∫ (60 + 2𝑡)3

2

2
𝑑𝑡 + 𝐶(60 + 2𝑡)−3

2 ,

𝑥 = (60 + 2𝑡)−3
2 ( 1

10
)(60 + 2𝑡)5

2 + 𝐶(60 + 2𝑡)−3
2 ,

𝑥 = 60 + 2𝑡
10

+ 𝐶(60 + 2𝑡)−3
2 .

To find 𝐶, note that at 𝑡 = 0, we have 𝑥 = 10. That is,

10 = 𝑥(0) = 60
10

+ 𝐶(60)−3
2 = 6 + 𝐶(60)−3

2 ,

or

𝐶 = 4(603
2 ) ≈ 1859.03.

We know 5 litres per minute are flowing in and 3 litres per minute are flowing out, so the
volume is increasing by 2 litres a minute. So the tank is full when 60 + 2𝑡 = 100, or when
𝑡 = 20. We are interested in the value of 𝑥 when the tank is full, that is we want to compute
𝑥(20):

𝑥(20) = 60 + 40
10

+ 𝐶(100)−3
2

≈ 10 + 1859.03(100)−3
2 ≈ 11.86.

There are 11.86 kg of salt in the tank when it is full. See the figure for the graph of 𝑥 over
𝑡. XXX

The concentration when the tank is full is approximately 11.86
100 = 0.1186 kg/litre, and we

started with 1
6  or approximately 0.1667 kg/litre.

XXX Figure

In the practice problems, feel free to leave answer as a definite integral if a closed form solution
cannot be found. If you can find a closed form solution, you should give that.

Practice Problems
1. Solve 𝑦′ + 𝑥𝑦 = 𝑥.
2. Solve 𝑦′ + 6𝑦 = 𝑒𝑥.
3. Solve 𝑦′ + 3𝑥2𝑦 = sin(𝑥)𝑒{−𝑥3}, with

𝑦(0) = 1.
4. Solve 𝑦′ + cos(𝑥)𝑦 = cos(𝑥).
5. Solve 1

𝑥2+1𝑦′ + 𝑥𝑦 = 3, with 𝑦(0) = 0.
6. Suppose there are two lakes located on

a stream. Clean water flows into the first
lake, then the water from the first lake
flows into the second lake, and then wa-
ter from the second lake flows further
downstream. The in and out flow from
each lake is 500 litres per hour. The
first lake contains 100 thousand litres of
water and the second lake contains 200
thousand litres of water. A truck with

500 kg of toxic substance crashes into
the first lake. Assume that the water is
being continually mixed perfectly by the
stream.
(a) Find the concentration of toxic

substance as a function of time in
both lakes.

(b) When will the concentration in the
first lake be below 0.001 kg per
litre?

(c) When will the concentration in the
second lake be maximal?

7. Newton’s law of cooling states that 𝑑𝑥
𝑑𝑡 =

−𝑘(𝑥 − 𝐴) where 𝑥 is the temperature,
𝑡 is time, 𝐴 is the ambient temperature,
and 𝑘 > 0 is a constant. Suppose that

156



Ap
pe

nd
ix

 C
 —

 In
te

gr
at

in
g 

Fa
ct

or
s

𝐴 = 𝐴0 cos(𝜔𝑡) for some constants 𝐴0
and 𝜔. That is, the ambient temperature
oscillates (for example night and day
temperatures).
(a) Find the general solution.
(b) In the long term, will the initial

conditions make much of a differ-
ence? Why or why not?

8. Initially 5 grams of salt are dissolved
in 20 litres of water. Brine with concen-
tration of salt 2 grams of salt per litre
is added at a rate of 3 litres a minute.
The tank is mixed well and is drained
at 3 litres a minute. How long does the
process have to continue until there are
20 grams of salt in the tank?

9. Initially a tank contains 10 litres of pure
water. Brine of unknown (but constant)
concentration of salt is flowing in at 1
litre per minute. The water is mixed
well and drained at 1 litre per minute.
In 20 minutes there are 15 grams of salt
in the tank. What is the concentration of
salt in the incoming brine?

10. Solve 𝑦′ + 3𝑥2𝑦 = 𝑥2.
11. Solve 𝑦′ + 2 sin(2𝑥)𝑦 = 2 sin(2𝑥),

𝑦(𝜋
2 ) = 3.A third question.

12. Suppose a water tank is being pumped
out at 3 L/min. The water tank starts at
10 L of clean water. Water with toxic
substance is flowing into the tank at 2 L/
min, with concentration 20𝑡 g/L at time
𝑡. When the tank is half empty, how
many grams of toxic substance are in
the tank (assuming perfect mixing)?

13. There is bacteria on a plate and a toxic
substance is being added that slows
down the rate of growth of the bacteria.
That is, suppose that 𝑑𝑃

𝑑𝑡 = (2 − 0.1𝑡)𝑃 .
If 𝑃(0) = 1000, find the population at
𝑡 = 5.

14. A cylindrical water tank has water flow-
ing in at 𝐼  cubic meters per second. Let
𝐴 be the area of the cross section of the
tank in square meters. Suppose water is
flowing out from the bottom of the tank
at a rate proportional to the height of
the water level. Set up the differential
equation for ℎ, the height of the water,
introducing and naming constants that

you need. You should also give the units
for your constants.
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Solutions for Appendix C
1.
2.
3.
4.
5.
6.
7.
8.
9.

10. 𝑦 = 𝐶𝑒−𝑥3 + 1
3

11. 𝑦 = 2𝑒cos(2𝑥)+1 + 1
12. 250 grams
13. 𝑃(5) = 1000𝑒2×5−0.05×52 = 1000𝑒8.75 ≈

6.31 × 106

14. 𝐴ℎ′ = 𝐼 − 𝑘ℎ, where 𝑘 is a constant
with units 𝑚2

𝑠 .
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Series Solutions
Practice Problems

1. Explain what you need to do in two dif-
ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Appendix D
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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Reduction of Order
This appendix is adapted from Jiri Lebl’s book “Notes on Diffy Qs”.

In general finding solutions to differential equations is difficult, if not impossible.

However, if we already know one solution to a differential equation, we can use that solution
to simplify the differential equation and make it easier to find the other solutions. The method
for doing this is called reduction of order.

This is an analgous procedure to finding the divisors of a number. For example if I want to find
the divisors of 364 and I already know that 7 is a divisor, then I can divide 364 by 7 to get 52.
Now I know that all the other divisors of 364 must also be divisors of 52, so I can focus on 52
(which is smaller and more manageable) instead of 364.

The idea is that if we somehow found 𝑦1 as a solution of 𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0, then we
could simplify this differential to a first order equation by assuming that a second solution is
of the form 𝑦2(𝑥) = 𝑦1(𝑥)𝑣(𝑥), where 𝑣(𝑥) is some function we need to find.

Example. Find 𝑦2(𝑥).

We just need to find 𝑣. We plug 𝑦2 into the equation:

0 = 𝑦″
2 + 𝑝(𝑥)𝑦′

2 + 𝑞(𝑥)𝑦2 = (𝑦″
1𝑣 + 2𝑦′

1𝑣′ + 𝑦1𝑣″) + 𝑝(𝑥)(𝑦′
1𝑣 + 𝑦1𝑣′) + 𝑞(𝑥)(𝑦1𝑣)

= 𝑦1𝑣″ + (2𝑦′
1 + 𝑝(𝑥)𝑦1)𝑣′ + (𝑦″

1 + 𝑝(𝑥)𝑦′
1 + 𝑞(𝑥)𝑦1)𝑣

In other words, 𝑦1𝑣″ + (2𝑦′
1 + 𝑝(𝑥)𝑦1)𝑣′ = 0. Using 𝑤 = 𝑣′, we have the first order linear

equation

𝑦1𝑤′ + (2𝑦′
1 + 𝑝(𝑥)𝑦1)𝑤 = 0.

To find the solution 𝑦2(𝑥), we only need to solve this differential equation, which is a first-
order differential equation in 𝑤.

After solving this equation for 𝑤 (using integrating factor or separation of variables), we
find 𝑣 by anti-differentiating 𝑤. We then form 𝑦2 by computing 𝑦1𝑣.

Since we have a formula for the solution to the first order linear equation, we can write a
formula for 𝑦2:

𝑦2(𝑥) = 𝑦1(𝑥) ∫(𝑒− ∫(𝑝(𝑥)𝑑𝑥)

𝑦1(𝑥)2 𝑑𝑥).

Note that this formula is only valid for a linear second-order differential equation.

However, it is much easier to remember that we just need to try 𝑦2(𝑥) = 𝑦1(𝑥)𝑣(𝑥) and find
𝑣(𝑥) as we did above. Also, the technique works for higher order equations too: You get to
reduce the order for each solution you find. So it is better to remember how to do it rather
than a specific formula.

Practice Problems
1. Suppose 𝑦1 is a solution to 𝑦″ + 𝑝(𝑥)𝑦′ +

𝑞(𝑥)𝑦 = 0. By directly plugging into the
equation, show that

𝑦2(𝑥) = 𝑦1(𝑥) ∫(𝑒− ∫(𝑝(𝑥)𝑑𝑥)

𝑦1(𝑥)2 𝑑𝑥)

is also a solution.
2. Take 2𝑥2𝑦″ + 𝑥𝑦′ − 3𝑦 = 0 for 𝑥 > 0.
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(a) Show that 𝑦 = 1

𝑥  is a solution.
(b) Use reduction of order to find a sec-

ond linearly independent solution.
(c) Write down the general solution.

3. (Chebyshev’s equation of order 1) Take
(1 − 𝑥2)𝑦″ − 𝑥𝑦′ + 𝑦 = 0.
(a) Show that 𝑦 = 𝑥 is a solution.
(b) Use reduction of order to find a sec-

ond linearly independent solution.
(c) Write down the general solution.

4. (Hermite’s equation of order 2) Take
𝑦″ − 2𝑥𝑦′ + 4𝑦 = 0.
(a) Show that 𝑦 = 1 − 2𝑥2 is a solution.
(b) Use reduction of order to find a sec-

ond linearly independent solution.
(It’s OK to leave a definite integral
in the formula.)

(c) Write down the general solution.
5. Take (2 − 𝑥)𝑦‴ + (2𝑥 − 3)𝑦″ − 𝑥𝑦′ +

𝑦 = 0 for 𝑥 < 2.
(a) Show that 𝑦 = 𝑒𝑥 is a solution.
(b) Use reduction of order to reduce

this differential equation to a lower
order differential equation.

(c) Write down the general solution.
(d) Why did we need the condition 𝑥 <

2?

Solutions for Appendix E
1.
2.
3.
4.
5.
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Linear Algebra
Practice Problems

1. Explain what you need to do in two dif-
ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Appendix F
1. (a) Way 1 is good

(b) Way 2 is better
2. The answer to the second question.
3.
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Complex Numbers
In this appendix25 you will learn:
•What a complex numbers is,
•The geometry of complex numbers, and
•The basics of manipulating complex numbers.

Preliminaries
The imaginary numbers are built from a special symbol 𝑖, whose square is 𝑖2 = −1. An imagi-
nary number is a pure multiple of 𝑖, like 𝑏𝑖, where 𝑏 is real. A complex number is a sum of a
real and imaginary number, and generally looks like 𝑎 + 𝑏𝑖. The set of all complex numbers,
denoted ℂ, is

ℂ = {𝑎 + 𝑏𝑖 : 𝑎, 𝑏 ∈ ℝ}.

To add and multiply complex numbers, you can treat “𝑖” like a variable, use the usual rules of
arithmetic, and then simplify any occurrences of 𝑖2 to −1. For example,

(1 + 2𝑖) + (3 + 4𝑖) = (1 + 3) + (2 + 4)𝑖 = 4 + 6𝑖

and

(1 + 2𝑖) ⋅ (3 + 4𝑖) = 3 + 4𝑖 + 6𝑖 + 8𝑖2 = (3 − 8) + (4 + 6)𝑖 = −5 + 10𝑖.

If 𝑧 = 𝑎 + 𝑏𝑖, we call 𝑎 the real part of 𝑧 and 𝑏 the imaginary part of 𝑧. Note: both the real part
and the imaginary part of a complex number are real numbers.

Geometry of the Complex Numbers
The real numbers (ℝ) can be identified with a number line. Multiplying by a real number
stretches, compresses, or reflects this number line (depending on whether the number is
greater than 1, less than 1, or negative). For example, consider the interval [1, 2]. The figure
on the left shows the effect of multiplication by −1 and on the right multiplication by 2:

−2 −1 0 1 2

−2 −1 0 1 2

0 1 2 3 4

0 1 2 3 4

Just like the real numbers, the complex numbers have a geometric meaning. A complex number
1 + 2𝑖 can be thought of as a point in the complex plane (with one axis the real axis and the
other axis the imaginary axis).

25Special thanks to Rhupert Ashmore-Sharpe for authoring the bulk of this appendix.
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−2 −1 1 2
Real Axis

−2

−1

1

2

Imaginary Axis

1 + 2𝑖

If we multiply 1 + 2𝑖 by 𝑖, we get 𝑖 ⋅ (1 + 2𝑖) = 𝑖 + 2𝑖2 = −2 + 𝑖, which geometrically corre-
sponds to a rotation counter-clockwise by 90 degrees.

−2 −1 1 2

−2

−1

1

2 1 + 2𝑖
−2 + 𝑖

For a complex number 𝑧 = 𝑎 + 𝑏𝑖, we define the complex conjugate as ̄𝑧 = 𝑎 − 𝑏𝑖. Geomet-
rically, taking the complex conjugate of a complex number reflects it over the real axis. For
example, take 𝑧 = 2 + 2𝑖 and its complex conjugate ̄𝑧 = 2 − 2𝑖.

−2 −1 1 2

−2

−1

1

2 𝑧 = 2 + 2𝑖

̄𝑧 = −2 + 𝑖

If 𝑧 = 𝑎 + 𝑏𝑖, then 𝑧 ⋅ ̄𝑧 = 𝑎2 + 𝑏2, which is a real number. The absolute value or modulus of
a complex number 𝑧 = 𝑎 + 𝑏𝑖 is

|𝑧| = √𝑎2 + 𝑏2 =
√

𝑧 ⋅ ̄𝑧.

Here is a list of other nice properties of the complex conjugate (verify these by working out
the algebra yourself):

•𝑧𝑛 = ̄𝑧𝑛

• 𝑧1
𝑧2

= ̄𝑧1
̄𝑧2
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•𝑧1 + 𝑧2 = ̄𝑧1 + ̄𝑧2

The reciprocal, 1
𝑧 , of a complex number can be simplified by multiplying the numerator and

denominator by ̄𝑧:

1
𝑧

= ̄𝑧
𝑧 ̄𝑧

= ̄𝑧
|𝑧|2

In this way, you can simplify a complex division problem. For example

2𝑖
2 + 3𝑖

= (2𝑖) ⋅ (2 − 3𝑖)
(2 + 3𝑖) ⋅ (2 − 3𝑖)

= 4𝑖 − 6𝑖2

13
= 6

13
+ 4

13
𝑖.

Euler’s Formula and Polar Form for Complex Numbers
A complex number written in the form “𝑎 + 𝑏𝑖” is said to be written in rectangular form.
However, similarly to how we can represent any point in the plane in polar coordinates, we
can also write a complex number in polar form. For any complex number 𝑧, there is a real
number 𝑟 and angle 𝜃 so that

𝑧 = 𝑟(cos(𝜃) + 𝑖 sin(𝜃)).

We call 𝜃 the argument of 𝑧 and write 𝜃 = arg(𝑧). The number 𝑟 is usually positive, but is is
not required to be. When it is positive, it is equal to |𝑧|.

−2 −1 1 2

−2

−1

1

2 𝑧 = 2 + 2𝑖

𝜃 = 𝜋
4

𝑟 =
√

8

Euler’s formula gives a valuable connection between a complex numbers and complex expo-
nentials, and it’s closely related to polar form.

Euler's Formula. Euler’s formula states that for any real number 𝑡,

𝑒𝑖𝑡 = cos(𝑡) + 𝑖 sin(𝑡).

Suppose 𝑧1 = 𝑒𝑖𝜃1  and 𝑧2 = 𝑒𝑖𝜃2  are two complex numbers. By the rules of exponents, we know

𝑧1 ⋅ 𝑧2 = 𝑒𝑖𝜃1𝑒𝑖𝜃2 = 𝑒𝑖(𝜃1+𝜃2).

More generally, if 𝑧1 = 𝑟1𝑒𝑖𝜃1  and 𝑧2 = 𝑟2𝑒𝑖𝜃2 , then

𝑧1𝑧2 = 𝑟1𝑟2𝑒𝑖(𝜃1+𝜃2).

This shows that when two complex numbers are multiplied, their angles are added adn their
moduli are multiplied. (If 𝜃 = 0 or 𝜋, then the complex number is real; test your intuition to
make sure this formula does what you think for real numbers.)
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Applying Complex Numbers
When solving quadratics 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, we have a general solution in terms of the quadratic
formula:

𝑥 = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎

.

If 𝑏2 − 4𝑎𝑐 < 0, there is no real solution to the equation, however, there is always a complex
solution.

Example.  Solve the quadratic equation 𝑥2 + 𝑥 + 2 = 0.

Using the quadratic formula, we have

𝑥 = −6 ±
√

12 − 4 ⋅ 1 ⋅ 2
2 ⋅ 1

= −6 ±
√

−7
2

= −3 ±
√

7
2

𝑖.

In fact, all non-constant polynomials have roots in the complex numbers.

Theorem (Fundamental Theorem of Algebra)

Every non-constant polynomial with complex coefficients has roots in the complex plane
and the sum of the multiplicity of those roots is equal to the degree of the polynomial.

Because of the Fundamental Theorem of Algebra, complex numbers are useful in situations
involving polynomials, like eigenvalue/eigenvector problems in linear algebra.

Example. Find all eigenvalues and eigenvectors of 𝑀 = [0
1

−1
0 ]

Computing det(𝑀 − 𝜆𝐼) = 𝜆2 + 1 = 0, we see the eigenvalues of 𝑀  are 𝜆 = ±𝑖.

To find the eigenvectors corresponding to 𝜆 = 𝑖, we compute

null(𝑀 − 𝑖𝐼) = null([−𝑖
−1

−1
−𝑖]) = span{[ 1

−𝑖]}.

Thus, the eigenvectors corresponding to 𝜆 = 𝑖 are non-zero multiples of [ 1
−𝑖].

Similarly, the eigenvectors corresponding to 𝜆 = −𝑖 are non-zero multiples of [1
𝑖].

Note, when dealing with complex matrices, it can be more difficult to spot by eye when two
vectors are linearly dependent. For example, {[−2

−1], [−1 −2]} is a linearly independent, but the

set {[−𝑖
−1], [

−1
−𝑖]} is linearly dependent. (Verify this yourself by row reducing!)

Practice Problems
1. Explain what you need to do in two dif-

ferent ways.
(a) Way 1
(b) Way 2

2. A second question.
3. A third question.

Solutions for Appendix G
1. (a) Way 1 is good (b) Way 2 is better
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2. The answer to the second question.
3.
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